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Abstract. The need for a ‘many-valued logic’ in linguistics has been evident since the 1970s, but there was 
lack of clarity as to whether it should come from the family of fuzzy logics or from the family of probabilistic 
logics. In this regard, Fine (1975) and Kamp (1975) pointed out undesirable effects of fuzzy logic (the failure 
of idempotency and coherence) which kept two generations of linguists and philosophers at arm’s length. 
(Another unwanted feature of fuzzy logic is the property of truth-functionality.) While probabilistic logic is 
not fraught by the same problems, its lack of constructiveness, that is, its inability to compose complex truth 
degrees from atomic truth degrees, did not make it more attractive to linguists either. In the absence of a 
clear perspective in ‘many-valued logic’, scholars chose to proliferate ontologies grafted atop the classical 
bivalent logic: ontologies for truth, individuals, events, situations, possible worlds and degrees. The result 
has been a collection of incompatible classical logics. In this paper, I present Sample Logic, in particular its 
semantics (not its axiomatization). Sample Logics is a member of the family of probabilistic logics, which is 
constructive without being truth-functional. More specifically, I integrate all the important linguistic data on 
which the classical logics are predicated. The concepts of (in)dependency and conditional (in)dependency 
are the cornerstones of Sample Logic.  
Keywords: Sample Logic, fuzzy logic, probabilistic logic, independency, conditional independency  

 
1. Introduction 
In this introduction, I critically survey the relevance of Classical Bivalent Logic (1.1), Fuzzy Logic 
(1.2) and Probabilistic Logic (1.3) for linguistics, displaying logical properties pertinent for the 
purpose of language analysis in an overview table (1.4).  
Disclaimer: Early vanguards (Reichenbach 1949) used the term ‘many-valued logic’ to denote logics with more than 
two truth values, encompassing both fuzzy logics and probabilistic logics. Somehow in subsequent usage, the term 
came to only refer to logics that are truth-functional, mainly to fuzzy logics (Gottwald 2017), although the term itself 
does not underwrite this limitation. In this paper, I continue to use ‘many-valued logic’ as an inclusive term of fuzzy 
and probabilistic logics.  

 
1.1 The case against Classical Logic 
The main charges against Classical Logic are its evaluation gaps and its truth-functionality.  

With respect to the first charge, so-called borderline cases (Sorensen 2018) or borderline 
contradictions (Alxatib et al. 2013; Cobreros et al. 2012) represent difficult examples for Classical 
Logic, given that there are only two truth values to draw from. Knowing that the median height of 
all 497 registered NBA basketball players is 199.8 cm, Jimmy Butler of Miami Heat (with his 199.8 
cm) represents a borderline case of tallness.  

 
(1) a. Jimmy Butler of Miami Heat is tall.  
 b. Jimmy Butler of Miami Heat is tall and not tall.  

 
Super- and subvaluationists attempt to interpret the above propositions in Classical Logic. 

According to the supervaluationists, borderline statements and borderline contradictions lack a 
truth-value (such as sentences with a truncated reference ‘The king of France is bald’), whereas 
the subvaluationists claim that examples in (1) can be both true and false. Ostensibly, both 
approaches advocate the existence of a third truth value under the guise of terms like ‘gap’ or 
‘glut’ rather than to make a genuine case for bivalent logic.0F

1  
Truth-functionality denotes the principle that the truth of compound sentences is determined 

by the truth values of its component sentences and remains unaffected if one of the component 
 

1 In two additional approaches, epistemicism (Williamson 1994) and contextualism (Price 2008), the truth of (1a) and 
(1b) would depend on the speaker’s knowledge or on a particular context. Since speaker knowledge and context are 
framed by the mention of “Miami Heat”, these models bear the risk of assigning inappropriate truth values.  
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sentences is replaced by another sentence with the same value (Gottwald 2017). However, this 
property is undesirable in linguistic analysis because it is not only the truth values of the 
component sentences that matter, but also their mutual relationship. Consider the following 
examples.  

 
(2) a. Nicolas Batum is taller than Cody Zeller and Joe Chealey is taller than Terry Rozier. 
 b. Joe Chealey is taller than Caleb Martin and Joe Chealey is taller than Terry Rozier. 
 c. Joe Chealey is taller than Caleb Martin and Terry Rozier. 

 
All players belong to the NBA basketball team ‘Charlotte Hornets’.1F

2 In accordance with 
Classical Logic, the first compound sentence is false if Nicolas Batum or Joe Chealey (or both) 
happen to be smaller than or as tall as their respective standard of comparison (which is the 
case). As Nicolas Batum is taller than Cody Zeller in (2a) and Joe Chealey is taller than Caleb 
Martin in (2b) are both false, replacing the first by the second provides (2b), which should have 
the same truth value as (2a), thanks to truth functionality. Yet, most people would interpret (2b) 
cumulatively as (2c) and judge (2c) differently from (2a) as neither true nor false, or as ‘half-true’, 
since it is evident that both component sentences in (2b)/(2c) share the same object of 
comparison, Joe Chealey, and that they are therefore correlated. In (2a), the two component 
sentences are uncorrelated or independent. Classical Logic does not draw a distinction between 
mutually dependent and independent sentences. Instead, both receive the same truth-functional 
treatment, which constitutes a major flaw.  

 
1.2 The case against Fuzzy Logic 
In his seminal paper Fuzzy Sets (1965), electric engineer Lotfi Zadeh pioneered the concept of 
Fuzzy Logic. Taking truth degrees from the real number interval [0, 1], he defined the truth of a 
conjunctive statement as the minimum of the two component truth degrees (1965: 341). 
Correspondingly, Fine (1975) and Kamp (1975) examined this version of Fuzzy Logic and 
rejected it as unsuitable for use in linguistics. Kamp argued (p. 131) that the way Zadeh designed 
Fuzzy Logic does not simultaneously satisfy the properties of conjunctive idempotency 
( φ ∧ φ = φ   

) and of conjunctive coherence ( 0φ ∧ ¬φ = 
). Put differently, if we assume 

conjunctive idempotency, then conjunctive coherence will fail. On the other hand, if we assume 
conjunctive coherence, then conjunctive idempotency will fail. Yet we need both in linguistics and 
philosophy. Kamp’s argument convinced two generations of philosophers and linguists to stay 
away from Fuzzy Logic.   

Fuzzy Logic was later revolutionized by the works of Petr Hájek (1998), who based Fuzzy 
Logic (in fact, the family of fuzzy logics) on the notion of t-norm (p. 28). In particular, conjunctions 
in Fuzzy Logic are defined by the notion of t-norm: ψ ψφ ∧ = φ ⊗     

.  
 

(2)  A t-norm is a continuous function [ ] [ ]2: 0,1 0,1⊗ →  satisfying the following conditions: 

 a. ⊗  is commutative and associative:  - x y y x=⊗ ⊗   
- ( ) ( )x y z x y z⊗ ⊗ = ⊗ ⊗  

 b. ⊗  is non-decreasing in both arguments: - 1 2 1 2x x x y x y≤ ⇒ ⊗ ≤ ⊗  
- 1 2 1 2y y x y x y≤ ⇒ ⊗ ≤ ⊗  

 c. ⊗  is absorbing:  - 1 x = x⊗  
- 0 x = 0⊗  

 
2 The height of the players is as follows: Cody Zeller 213 cm; Nicolas Batum 206 cm; Caleb Martin 196 cm; Joe Chealey 
193 cm; and Terry Rozier 185 cm.  
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In an interesting paper, Sauerland (2011) renewed Kamp’s argument against Fuzzy Logic 

based on t-norms by using fuzzy negation and Brouwer’s Fixed Point Theorem,2F

3 but there is a 
gap in his proof. Instead, I put forward a direct way of rebuilding Kamp’s case against Fuzzy 
Logic, which makes full use of the notion of t-norms. To know more about the proof of the 
following lemma and details of Sauerland’s argument, refer to appendix, item A.  

 
(3)  Lemma:  
  Let [ ] [ ]20,1 0,1:⊗ →  be a t-norm on which a fuzzy evaluation ψ ψφ ∧ = φ ⊗     

 

is based. If the evaluation ⋅  simultaneously satisfy the properties of idempotency 
( φ ∧ φ = φ   

) and of coherence ( 0φ ∧ ¬φ = 
), then the negation is reduced to 

0 and 1 (for all  φ: φ¬ 
= 0 or 1). 

 
In addition to these problems,3F

4 Fuzzy Logic is truth-functional like Classical Logic, which 
further disqualifies it from being applied to linguistics (despite the fact that this feature appears 
to be a chief asset in engineer sciences).  

 
1.3 The case for Probabilistic Logic 
The Russian mathematician Andrei Kolmogorov first axiomatized Probability Theory in 1933. The 
set-theoretic formulation of his axioms assumes a population Ω, a system F of subsets of Ω, 
called algebra,4F

5 and a probability (measure) function P: F → [0,1], satisfying the axioms in (4). 
Adam (1998) and other logicians (Demey et al. 2019) elaborated upon a logical formulation of 
these axioms that omits Kolmogorov’s set structure. With a view to achieving this objective, they 
linked their version of Probabilistic Logic expressively to Classical Bivalent Logic, which is 
therefore a (non-truth-functional) extension of it. A probabilistic evaluation ⋅ : SENT → [0,1] 
satisfies the following axioms of Kolmogorov. 

 
(4)  Logical Version (Adam 1998) Set-theoretic Version 
 K1: 0 1φ≤ ≤ 

 0 ≤ P(A) ≤ 1 for A ∈ F  
 K2: If φ is a tautology in Classical Logic, then 1φ = 

  P(Ω) = 1 
 K3: If φ and ψ are logically incoherent in Classical Logic,  

then ψ ψφ ∨ φ= +     
.  

If A ∩ B = ∅,  
then P(A ∪ B) = P(A)+ P(B).  

 
The lack of success attained by Probabilistic Logic in linguistics is primarily attributed to the 

lack of constructiveness. Probabilities or truth degrees are defined deductively with few 
instructions attached on how to construe compound truth degrees. Exceptions are the subclass 
of disjunctive sentences, namely those whose conjunctive counterpart is incoherent (K3), and 
the subclass of independent conjunctive sentences (where ψ ψφ ∧ = φ ⋅     

). The 
probabilistic conditional ψφ → 

 is partly defined in a constructive manner as the quotient of 
ψφ ∧ 

 and φ  , but we still cannot determine the conjunctive probability. In my 
 

3 Smith (2015: 1275-76) suggested using different fuzzy logics for different language data: to involve Łukasiewicz 
Fuzzy Logic where only coherence and continuous negation are needed, and to employ Gödel Fuzzy Logic where 
only coherence and idempotency are requested. I am somewhat critical of this approach as this would lead to the 
same kind of fragmentation I try to argue against in the case of Classical Logic (see abstract and conclusion).  
4 See for example Border (1989: 28).  
5 A system of subsets F is an algebra iff (i) Ω ∈ F; (ii) for A ∈ F: Ac ∈ F; (iii) for A, B ∈ F: A ∪ B ∈ F. A system of 
subsets F is a σ-algebra iff (i) and (ii) hold and not only the union of two but an infinite union belongs to F. In general 
Probability Theory, the axioms are based on σ-algebras. As we deal with finite language expressions, the notion of an 
algebra is sufficient. See Kolmogorov (1933) and von Plato (2005). 
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understanding, compound truth degrees are constructive if they are defined as a function of the 
component degrees and possibly of some other parameter (e.g. dependence) which may or may 
not be truth-functional. Constructiveness is thus entailed by truth-functionality but does not entail 
it.  

The linkage between Probabilistic and Classical Logic is a problematic assumption.5F

6 The 
probabilistic conditional ψφ → 

, for instance, is defined as the quotient of ψφ ∧ 
 and 

φ  . It differs from the material conditional in Classical Logic, which is defined as a disjunction 
ψφ ∨¬ 

. The truth degrees of both expressions diverge in general, which poses a problem 
for K2 (see also section 3.3).6F

7 In fact, there is a simple way of formulating the Kolmogorov axioms 
that is equivalent to the set-theoretic version and that avoids the link to Classical Logic. If we 
replace “P(Ω) = 1” by “P(A ∪ Ac) = 1” in the axiom K2, we can then define a probabilistic 
evaluation ⋅ : SENT → [0,1] as one that satisfies the following axioms of Kolmogorov.  

 
(5) K1: 0 1φ≤ ≤ 

; 
 K2: 0φ ∧ ¬φ =   and 1φ ∨ ¬φ = 

; 
 K3: If ψ 0φ ∧ =  , then ψ ψφ ∨ φ= +     

.  
 
In sections 2 and 3, I develop Sample Logic, a member of the family of Probabilistic Logics 

which is constructive, as close to linguistic data as possible, and obviates the challenges of other 
aforementioned logics. (I elaborate only upon its semantic part not upon its axiomatization which 
is left for future work.)  

 
1.4 Linguistic Performance of Classical and Non-Classical Logics 
In this preparatory section, I summarize (non-exhaustive) logical properties that play a role in 
linguistics and for which it is important to compare the performance of different logics.  

A logic pertinent to linguistics should ensure the best possible engagement between 
linguistic data and the rigorousness of logical properties. It should be constructive (6a), should 
have complementary negation (6b), should be idempotent (6c), should be coherent (6d),7F

8 should 
connect conjunction and disjunction via de Morgan laws (6e+f),8F

9 should differentiate9F

10 between 
dependent and independent sentences (6g), should promote the material, residual and/or 
probabilistic conditional10F

11 in a manner that is sensible to linguistic data (6h/i/j), should exhibit the 
residual, material and/or probabilistic biconditional (6k/l/m), and should distinguish between 
conditionally dependent and independent sentences (6n).  

I have compared seven logics on these properties, the findings of which are presented in 
Table 1. These seven logics are as follows: LClass (Classical Bivalent Logic), L3 (Kleene Trivalent 

 
6 Lotfi Zadeh (2004), the founder of Fuzzy Logic, opines that Probabilistic Logic should be linked instead to Fuzzy 
Logic, but he did not present technical details.  
7 Adam (1998: 114) hedges at this problem by admitting two conditionals in Probability Logic, a probabilistic and a 
material conditional, stating: “Actually, it is only since Frege that the material conditional has become standard. The 
status of conditionals had long been a subject of controversy before that, as a remark attributed to the Hellenistic 
logician Callimachus attests: ‘Even the crows on the rooftops are cawing over the question as to which conditionals 
are true.’ (Mates, 1965: 203).” 
8 Ripley (2011) and Alxatib et al (2013) discuss speaker acceptability of contradictions. The empirical tests put before 
probands involve contractions with vague predicates (e.g. John is tall and not tall). Speakers sometimes accept 
contradictions because they telescope different contexts together or pursue certain goals in communication. Yet, I 
maintain that coherence is a crucial feature for any logic that attempts to model objective truth (see Kamp 1975).  
9 See Aloni (2016).  
10 The crucial question in (6g) is whether the logic draws a distinction between dependent and independent sentences 
that is useful in linguistics. Classical Logic, for example, treats all sentences as independent which is not sensible. 
11 Each of the logics listed promotes one conditional and one biconditional which I have marked in red font. Sometimes 
this (bi)conditional collapses with another (bi)conditional. In Łukasiewicz Fuzzy Logic, for example, the residual 
conditional is equivalent to the material conditional; in Classical Logic all three conditionals collapse.  
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Logic), Ł (Łukasiewicz Fuzzy Logic), LMin (Gödel Fuzzy Logic) and LProd (Product Fuzzy Logic), 
LAdam (Adam Probabilistic Logic), LSam (Sample Logic). For the semantics of the first five logics, 
refer to appendix, item B. The cells of Table 1 with bold underscored font highlight the 
(bi)conditional that is promoted by the logic in question. 

 

(6)  Properties of { } [ ]0,1 0,1:SENT or⋅ →   LClass L3 Ł LMin LProd LAdam LSam 

 a. Constructive 2-step evaluation: Atomic/Complex Yes Yes Yes Yes Yes No Yes 
 b. Negation: 1¬φ = − φ   

 Yes Yes Yes No No Yes Yes 
 c. Idempotency: φ ∧ φ = φ   

 Yes Yes No Yes No Yes Yes 
 d. Coherence: 0φ ∧ ¬φ = 

 Yes No Yes Yes Yes Yes Yes 
 e. First de Morgan law: ( )ψ ψφ ∧ = φ ∨¬ ¬ ¬   

 Yes Yes Yes Yes Yes Yes Yes 
 f. Second de Morgan law: ( )ψ ψφ ∨ = φ ∧¬ ¬ ¬   

 Yes Yes Yes Yes Yes Yes Yes 
 g. Independency: ψ ψφ ∧ = φ ⋅     

  No No No No No Yes Yes 
 h. Material Conditional: ψ ψφ → = φ ∨¬   

 Yes Yes Yes No No No No 
 i. Residual Conditional: ψ 1 ψφ → = φ⇔ ≤     

 Yes No Yes Yes Yes No No 
 j. Probabilistic  

Conditional:  for
ψψ 0 : φ ∧

φ φ → =
φ

>  

   

 

 Yes No No No No Yes Yes  
 k. Material  

Biconditional:  ( ) ( )ψ ψ ψφ ↔ = φ ∨ ∧ φ ∨¬ ¬    Yes Yes Yes No No No No  
 l. Residual  

Biconditional:  ( ) ( )ψ ψ ψφ ↔ = φ → ∧ → φ     Yes No Yes Yes Yes No No  
 m. Probabilistic  

Biconditional:  
ψ  if 0 ψ

ψ
ψ  if 0 ψ
φ < φ

φ ↔ =  φ < φ

≤
<

       

 

       

 Yes No No No Yes Yes Yes  
 n. Conditional  

Independency:  ( )χ ψ χ χ ψ→ φ ∧ = → φ →⋅       No No No No No Yes Yes 
 

Table 1: Logical properties in seven logics (with promoted bi/conditionals highlighted) 

 
2. How sampling works on simple sentences 
King Solomon’s dictum appropriately explicates the mindset of Sample Logic:  

“What has been will be again, what has been done will be done again, there 
is nothing new under the sun” (Ecclesiastes 1:9); 

as does the saying attributed to Mark Twain, alias Samuel Clemens (1835-1910):11F

12  

“History doesn't repeat itself, but it often rhymes.” 

Both statements can be used to affirm the fundamental principle of experiments’ 
repeatability. Owing to the fact that the population Ω of all events, states, and individuals is 
inaccessible and too large, we draw a sample Σ from Ω for each formula φ and form a property 
set X that comprises of those items in the sample that satisfy φ. Sometimes, it might be sufficient 
to just represent individuals. At other times, spelling out events would suffice.  

 
12 Mathematician and data scientist Catherine O’Neil (2016) argues in the New York Times best-seller Weapons of 
Math Destruction against the bias built in big data algorithms. Using a wide range of real-life examples, she cautions 
against the tendency of algorithms to extrapolate the future from past behavior even as to suggest that the unfettered 
use of AI (Artificial Intelligence) poses a threat to a democratic society. Her warnings impel us to build the samples on 
which Sample Logic is predicated with the greatest caution.  
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(7)  Sentence evaluation (Definition): 
  The truth degree or probability (P) of each sentence φ is the quotient of the property set 

size and the sample size: ( )
( )

φ == = 

card
card

X X
P

Σ Σ
. 

 
Although the property sets may vary for different samples (and thus the truth degree P), the 

Central Limit Theorem in probability theory guarantees that the more samples we take, the closer 
P = |X|/|Σ| will get to the truth degree for the entire population (Butler 1985: 55; Gut 2005: 328). 
Thus, every sample and property set provide an approximation for the population.  

In the following subsections, we review different sets of data which linguists previously had 
treated within several mutually incompatible logics. The aim of the subsequent discussion is to 
demonstrate that the same data can be dealt with in one unitary logic, Sample Logic.  

 
2.1 Specific past events 
Specific past events are evaluated in a singleton sample Σ that contains the event as a possibility 
and by a property set X that includes the event, if the event actually occurred, or is empty, if not. 
Therefore, the truth degree is either P = 1 or 0. The following example was a news piece reported 
by the Jerusalem Post on May, 7th of 2020 (Ben Harris 2020).  

 
(8)  Marilee Shapiro Asher contracted the Spanish Flu in 1918 (and the Coronavirus in 2020 

and survived both).  
 

2.2 Specific future events 
The prediction of a specific future event E involves one or several context-induced predictors. A 
predictor of E is an event whose occurrence is correlated to the occurrence of E. (A correlated 
event can either be a causing event or just a ‘symptom’ of E.) The sample Σ to forecast a future 
event contains the predictor events, while the property set X includes past events of type E that 
are correlated to a predictor event. Consider examples in (9):  

 
   Sample Σ Property Set X Truth Degree P 

(9) a. There will be a recession {14 yield inversions} {9 recessions}; 64%; 
 b. There will be a pandemic {11 epidemics} {9 pandemics} 82%; 
 c. Bimbo will neither hike nor diminish its bakery business {523 companies} {214 companies} 41% 
 d. Clorox will strongly increase sales of its disinfecting products {349 companies} {73 companies} 21%; 
 e. The car rental company Hertz will file for bankruptcy {216 companies} {5 companies} 2%; 
 f. Kimberley-Clark will greatly boost sales of its paper towels {421 companies} {80 companies} 19% 
  next year.   

 
Suppose that the above predictions were made at the end of 2019. In (9a), financial analysts 

take the occurrence of yield curve inversions as a predictor of an upcoming recession, although 
the correlation is not absolute. A yield curve inversion is a scenario in which short-term debt 
instruments have higher yields than their long-term counterparts because investors apprehend a 
change in macro-economic conditions. The sample Σ of (9a) comprises of 14 past yield curve 
inversions since 1937, the timeframe of available comparative data (refer to appendix, item C). 
Nine of these 14 yield curve inversions were immediately followed by a recession (X). If a yield 
curve inversion occurred in the stated year, the truth degree of predicting There will be a 
recession next year is 64% (P = 9/14); if not it is 36% (P = 5/14). As a yield curve inversion did 
occur in 2019, prompting financial analysts to forecast a recession (Lewis 2019), it can be safely 
inferred that the occurrence of the Covid-19 pandemic has fulfilled this prediction.  
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Pandemics in (9b) are difficult to predict due to the lengthy chain of causation involved. The 
term ‘pandemics’ has no universally agreed upon definition, but ‘wide geographic spread’, ‘high 
attack rates’ and sometimes ‘high death tolls’ are typical features of a pandemic (Fauci et al 
2009). Virologists keep track of hundreds of pathogens they find in bats, rats and fleas. As long 
as these viruses are confined within their pre-human hosts, the risk of a pandemic is zero. 
Starting from the day a pathogen is found in humans, its daily reproduction rate in the first month, 
when there is no lockdown to fetter its spread, provides the blueprint of a potential pandemic. 
Epidemiologists use the SIR Model (Hethcote 1989) to calculate the reproduction rate of a 
contagious disease and to predict its future course. The World Health Organization (WHO) 
published daily Covid-19 infections in Wuhan beginning from 02-Dec-2019, when the index case 
was discovered through the last day of 2019 (WHO 2020). From these data, which serve as a 
predictor of (9b), I approximate the reproduction (β) and recovery (γ) rates of Covid-19 (for details, 
refer to appendix, item D). Using entries of Byrne (2008)’s Encyclopedia of Pandemics and 
Plagues, I assume that 11 historical epidemics (Σ) show reproduction and recovery rates similar 
to Covid-19. The property set (X) consists of nine epidemics in the sample that went on to be 
known as historical pandemics. The forecast of There will be a pandemic next year made with 
the knowledge available at the end of 2019 is therefore true to the degree 82% (P = 9/11).  

Examples (9c-f) are forecasts about the economic performance of four globally operating 
companies. Bimbo is a Mexico-based maker of industrial bakery goods, whereas the US-
company Clorox manufactures disinfecting products. Similarly, Hertz is a car rental company with 
headquarters in Florida, and the US-corporation Kimberley-Clark produces consumer tissues 
such as paper towels. Statements about the future performance of companies involve 
macroeconomic and microeconomic predictors. From a macroeconomic perspective, bakery 
products (Bimbo)12F

13 and consumer tissues (Kimberley-Clark)13F

14 are essential consumer goods, 
the demand of which thrives during the period of a ubiquitous disaster. However, both these 
industries appear to be indifferent to economic recessions unless when they co-occur with a 
disaster. The outbreak of a viral or bacterial epidemic is a macroeconomic predictor for good 
performance of Clorox.14F

15 In a similar manner, the occurrence of an economic recession is a 
macroeconomic indicator for the bankruptcy of Hertz.15F

16 Furthermore, the main microeconomic 
predictor for the above statements (9c-f) is a change in profitability for the company in question. 
For example, an increase in profit margins allows the company to reduce the price of its products 
in the following year which, in turn, may raise its sales and market share. The sample and 
property set for the above examples involve companies and their economic activities carried out 
in the previous years. For instance, the sample Σ of (9d) comprises of Clorox’s partners and 
competitors16F

17 that did business during a past epidemic (macroeconomic predictor) or that were 
as profitable as Clorox in 2019 (microeconomic predictor), altogether 349 companies. The 
property set X includes companies of the sample that witnessed a ‘strong’ increase (>9%) of their 
sales, which was the case with 73 companies. The foretelling of Clorox will strongly increase 
sales of its disinfecting products is therefore true to the degree 21% (P = 73/349). For more 
details of how the truth degrees of (9c-f) are calculated, refer to appendix, item E.  

 
13 The vice-president of Grupo Bimbo (annual sales: 15 billion US$), Jorge Zárate, reports a strong boost of demand 
in the first quarter of 2020 due to the outbreak of Covid-19 (Spencer 2020).  
14 According to Niki Edwards, senior lecturer at the School of Public Health and Social Work, Queensland University 
of Technology, Australia, people stockpile toilet paper and other consumer tissues during a period of disaster in order 
to compensate for a loss of control (Lucy 2020).  
15 In addition to epidemics, disasters such as earthquakes that result in widespread injuries may also cause a surge 
in demand for disinfecting products. 
16 A recession, especially if it is severe, results in diminished economic activity. As people rent cars for their economic 
activities, a recession represents a financial risk for car rental companies. Hertz Global Holdings announced 
bankruptcy on 22-May-2020 (Kelly 2020) indirectly due to a recession and more directly because of the lockdown 
related to the Covid-19 pandemic, which brought outdoor activities to a complete halt.  
17 Company A is a partner of Company B if consumers buy A’s products together with B’s products. A is a competitor 
of B if consumers either buy A’s products or B’s products. For a mutual partnership or mutual competition to be 
meaningful, the affected sales must lie above a certain threshold, say 1% of yearly sales of A and B. 
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2.3 Modal events 
Scholars have traditionally interpreted modal expressions by bivalent truth and possible worlds 
(Groenedijk and Stokhof 1975; Kratzer 1977, 1981, 1991; Lewis 1981).17F

18 Any of (10a-f) below is 
true in a world w if the clause without the auxiliary verb is true in all or some world w' accessible 
from w. Accessibility relations are derived from conversational backgrounds, which should be 
understood as sets of propositions that capture a context’s properties and which can be glossed 
by expressions such as in view of what is known (epistemic) or in view of the duties (deontic). 
For example, (10a) is true in a world w if the clause without the auxiliary verb is true in every 
world w' wherein everything that is known in w is true. As an amendment to an internal paradox 
in the formalization,18F

19  Kratzer (1981, 1991) introduced Graded Possible World Semantics 
(GPWS) where accessibility relations are derived from two conversational backgrounds, one is 
context-independent and the other context-dependent. The second conversational background 
imposes a partial order “<” on the worlds defined by the first. Necessary truth in w is evaluated 
in ideal worlds (or minimal worlds in the sense of “<”) accessible from w. Besides modal 
auxiliaries, GPWS was also applied to the formalization of the English progressive aspect -ing 
(Portner 1998).  

 
(10)  John  Sample Σ Property Set X Truth Degree P 

 a. must (=will certainly) {187 teachers} {138 teachers} 74%   
 b. might {1 teacher} {1 teacher} 100%   
 c. will  {181 teachers} {138 teachers} 76%   
 d. must (=is obliged to) {1 duty}; {208 followers} {1/0 duty}; {120 positive} 100%; 0%; 72% 
 e. can {1 duty/ban}; {208 followers} {0/0}; {80 indeterminate} 0%; 0%; 24% 
 f. must not {1 ban}; {208 followers} {1/0 ban}; {8 negative} 0%; 100%; 4% 

  get vaccinated against Covid-19 within three months.    
 
The first three of these modal statements are epistemic, the last three are deontic 

expressions. I will pursue a different analysis of modal expressions. In Sample Logic, epistemic 
statements such as the one in (10a-c) are predictions about the future, whereas deontic 
statements in (10d-f) are not. The truth of an obligation does not lie in the probability of its future 
fulfilment, but in the truth of its existence at the time of speaking.  

Suppose that the statements (10a-f) were made at the end of 2020. Global rollout of Covid-
19 vaccines started during December 2020 allowing for a certain amount of comparative data.19F

20 
The main predictors for Covid-19 vaccination in (10a-c) are availability of the vaccine, access 
given to a professional category and personal willingness. During 2020, John’s country of 
residence signed contracts with three manufacturers of mRNA-vaccines who agreed to deliver 
daily doses. As a teacher, John is given preferential access to the vaccine, although he is worried 
about adverse effects. Before the rollout, his personal details and opinions were registered in an 
applicant database. Health officials promised to deliver 35.000 doses of vaccines to his district 
and to offer vaccinations to 158 instructors out of a teacher population of 187 before the end of 
March 2021. (The 158 instructors were chosen according to a distribution key of the Government.) 
Thirty-one teachers with the same predictor profile as John received an offer even before the end 
of 2020, but only twenty-seven were actually vaccinated. The sample Σ for (10a) comprises of 
the 187 teachers in John’s district, while the property set X contains 138 (≈ 158 x 27/31) teachers, 

 
18 Possible-world semantics was put on a formal basis in the seminal papers of Samuel Kripke (1959, 1963) who also 
introduced the notion of an accessibility relation R.  
19 This paradox, called Samaritan Paradox, is one of Prior’s paradoxes of derived obligation (Prior 1954).  
20 O’Neil (2016)’s main criticism against big data algorithms is their attempt to predict future behavior on the basis of 
past behavior in cases where the predicted event, because of its uniqueness, does not follow a genuine template. In 
spite of this difficulty, I attempt to propose a probability for every future event so that Sample Logic is not a model with 
“evaluation gaps”.  
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the extrapolated number of teachers with John’s predictor profile who get vaccinated by the end 
of March 2021. The epistemic auxiliaries must, might and will affect the truth value of the 
prediction in different ways. Must and might act as universal (respectively, existential) quantifier 
over the sample of 187 teachers. 

 
(11) a. John must get vaccinated within three months in (10a) is true, if and only if all 

teachers with John’s predictor profile get vaccinated within three months.  
 
Since only 138 teachers with John’s predictor profile were expected to get vaccinated, the 

truth degree of (10a) is lower with 74% (P = 138/187).  
 

 b. John might get vaccinated within three months in (10b) is true, if and only if there is 
someone with John’s predictor profile who gets vaccinated within three months.  

 
Since there is not only one but 138 teachers with John’s predictor profile who were expected 

to get vaccinated, the truth degree is 100% (P = 1/1). The unmarked way of stating a prediction 
involves the auxiliary will (or morphological future tense in languages like French). In a context 
where will is not contrasted with must, like in (9), will-predictions are approximations of must-
predictions. If they are contrasted, as in (10), we understand will as an almost-universal quantifier.  

 
 c. John will get vaccinated within three months in (10c) is true, if and only if almost all 

(97%) teachers with John’s predictor profile get vaccinated within three months. 
 
Thus, the sample of (10c) takes six predictor profiles (ca. 3%) that are not linked to a 

vaccination off the base sample, shrinking to 181 predictor profiles. The truth degree of John will 
get vaccinated within three months is 76% (P = 138/181).  

The rating of external deontic forces in (10d-f) first depends on legal obligation. If the law of 
a country authorizes the government to mandate vaccinations and if the government decides to 
do so, 20F

21 then (10d) has truth degree one, (10e) and (10f) truth degree zero. If John’s medical 
history21F

22 or his membership to a religious group22F

23 forbids him to take the vaccine, then (10d) and 
(10e) are false and (10f) true. Apart from legal obligation, medical condition and religious belief, 
(10d-f) are evaluated by the degree of social acceptance (which in turn is shaped by mass media). 
Suppose that followers on Twitter signify people John has social relations with. John surveys his 
followers’ stance on Covid-19 vaccinations by giving opportunity to provide feedback with the 
following smileys:  positive;  indeterminate;  negative. These choices are taken as proxies 
for obligation, permission and prohibition; 150 of his 208 followers23F

24  are positive, 50 are 
indeterminate and eight are negative. The respective truth degrees for (10d-f) can be derived 
accordingly. 
 
2.4 Generalized Quantifiers 
Barwise and Cooper (1981) pioneered the view of noun phrases (John, all scholars) and noun 
determiners (all) as quantifiers, referred to as generalized quantifiers. Van Benthem (1984), 
Keenan and Stavi (1986), Keenan (1996), Keenan and Westerståhl (1997) further developed and 
streamlined the theory. In this subsection, I interpret generalized quantifiers in Sample Logic.  

 
21 Covid-19 vaccinations are mandatory for healthcare workers in Italy since April 2021.  
22 In the event of severe allergic reactions and certain autoimmune diseases, Covid-19 vaccinations are harmful.  
23 Between 1931 and 1952, the Jehovah’s Witnesses opposed vaccinations believed to be a violation of Leviticus 17: 
10-11, but lifted the ban after 1952. The equation of mRNA vaccines with system software by pharmaceutical 
corporations (e.g. Moderna 2021) made some religious groups suspicious of a scheme leading up to the ‘mark of the 
beast’ (Revelation 13).  
24 According to the analytics software Beevolve, the average number of followers per user on Twitter was 208 in 2012.  
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Suppose that a group of ornithologists earmarked a district in a nature reserve and put tiny 
infrared cameras on all n owls they found there (including m adult owls and n-m baby owls). The 
ornithologists found evidence of a very large mouse population in that district. They estimated 
that the upper limit of possible mouse-hunting events for 180 days was q per owl because of 
various constraints. During the three-month trial, the cameras documented all hunting events, 
including the type of animals caught. At the end, the ornithologists counted the actual number of 
hunted mice, successful or not, as uk ≤ q, for each owl k. They organized the owl population A in 
accordance with the number of chased mice: A = {(k, uk) | ∀i < k: ui  ≤ uk}. The ornithologist had 
to decide which owl to be classified as prey bird since no owl hunted the maximal number of 180 
mice. For example, the baby owl did not hunt a single mouse. Thus, they put in place the 
threshold of r mice below which they considered an owl not to be a hunter. Given this threshold, 
let denote vk = min {uk, r} and Vk = {hunting events of owl k cropped by r}. With these data, full 
truth conditions for the most common generalized quantifiers are spelled out in (12).  
 
(12)   Conditions for Full Truth 
 a. Every owl always hunts mice. ∀i: ui = q.  
 b. Every owl hunts mice. ∀i: vi ≥ r. 
 c. An owl hunts mice. ∀i: vi ≥ r (i is an adult-owl). 
 d. At least k owls hunt mice. ∃i1 …∃ik: i1 ≠…≠ ik ∧ vi1 ≥ r ∧…∧ vik ≥ r. 
 e. At most k owls hunt mice. ∃i1 …∃in-k: i1 ≠…≠ in-k ∧ vi1 < r ∧…∧ vin-k < r. 
 f. Only k owls hunt mice. ∃i1 …∃in: i1 ≠…≠ in ∧ vi1 < r ∧…∧ vin-k < r ∧ vin-k+1 ≥ r ∧…∧ vin ≥ r.  
 g. Some owls hunt mice. At least one owl hunts mice. 
 h. Most owls hunt mice. At least half of the owls hunt mice. 

 
These statements may be less than fully true. In order to assign smaller truth degrees, we 

define samples and property sets based on the truth conditions in (12). An example of a 
population of 27 owls with their respective hunting events is provided (refer to appendix, item F, 
Table 8).  

Universal quantification in the first three examples (12a-c) can be understood as manifold 
conjunctions. The sample and property sets are set products of possible and actual hunting 
events over A, the owl population. The corresponding truth degree is a quotient of two numerical 
products. The truth degree of every owl (always) hunts mice in (12a-b) equals zero due to the 
non-hunting baby owls in the population. Generic statements like in (12c) are ‘law-like’ (Kadmon 
and Landman 1993: 357) while simultaneously allowing exceptions. The m adults of the owl 
population that do hunt to some degree are the rule, while the n-m non-hunting baby owls are 
the exception. By replacing n with m, the sample and property set for the generic quantifier in 
(12c) are almost the same as for the universal quantifier in (12b). In the example (appendix item 
F, Table 8), the truth degree of an owl hunts mice is 16%.  

The truth degree of at least k owls hunt mice in (12d) is the number of those k best 
performing owls that hunt at least r mice divided by k. In the example (Table 8), nineteen owls 
are prey birds as defined by the ornithologists. The truth degree of at least 21 owls hunt mice is 
thus 90% (P = 19/21).  

The statement at most k owls hunt mice is true if at least n-k owls do not hunt mice is true. 
The truth degree of (12e) is thus the number of those n-k worst performing birds that hunt less 
than r mice divided by n-k. In Table 8, eight of 27 owls do not count as hunters. This is why the 
truth degree of at most 11 owls hunt mice is 50% (P = 8/16). In (12f), only k owls hunt mice is 
true if the lower n-k owls of the population do hunt less than r mice and the upper k owls do hunt 
more than r-1 mice. In Table 8, this is only true if k = 19, and otherwise false. In concordance 
with the theory of generalized quantifiers, some in (12g) is interpreted as at least one, and most 
in (12h) as at least half of. Both truth degrees are one in the example. 
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(13)   Sample Σ Property Set X Truth Degree P 

 a. Every owl always hunts mice. { } nq hunts  { }1
 n

kk
u hunts

=∏  1 0%
n

kk
n

u
q

= =∏  

 b. Every owl hunts mice. { } nr hunts  
1

n
kk

V
=∏  1 0%

n
kk

n
v

r
= =∏  

 c. An owl hunts mice. { } mr hunts  
1

m
kk

V
=∏  1 16%

m
kk

m
v

r
= =∏  

 d. At least k owls hunt mice. ( )
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( )

11, ,...

..., ,
Ck

n k

u

n k u A−

  =  
− ∈  

 ( ), Ci k
k

i

i u
D

u r

 ∈ =  
<  

 
8 50% , 11 .

16
k

k

D
k

C
 = = 
 

 

 f. Only k owls hunt mice.  ( ){ },Ek n kn k u A−= − ∈  ( )
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 g. Some owls hunt mice. ( ){ }1 ,A nn u A= ∈  ( ) 1
1
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B
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 ∈ =  
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 h. Most owls hunt mice. 
(with k = round{n/2}) 
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k

k
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A

 

 
2.5 Gradable States 
There exist two distinct analyses of gradable adjective meaning. The first assigns a proper 
ontology to degrees (at par with times, possible worlds, individuals and truth values) and 
evaluates adjectives as partial functions from individuals to degrees (Cresswell 1976; Hellan 
1981; Kennedy 1999, 2001, 2007; Seuren 1978; von Stechow 1984). In this line, degrees are 
either employed as unanalyzed primitive or further broken down as equivalence classes of 
individuals (Cresswell 1976) or as convex sets and particularly as intervals of the real number 
space (Seuren 1978; von Stechow 1984; Kennedy 2001). The second approach interprets 
gradable adjectives as partial functions from a (context-dependent) comparison class to truth 
values (Fine 1975; Gerner 2007; McConnell-Ginet 1973; Kamp 1975; Klein 1980; Pinkal 1995). 
I adopt this analysis since comparison classes are directly amenable as samples.  

In Sample Logic, gradable adjectives, gradable antonymic pairs, as well as comparative and 
superlative forms, are interpreted by comparison classes (or samples) induced by the context. 
Pairwise comparison between the subject and each member of the comparison class yields three 
sets, the sets of positive, negative, and inconclusive comparisons. The truth degree is the size 
ratio of the set of positive comparisons and the sample. The statements below are drawn from 
the 30 teams of the NBA, the National Basketball Association, with its 497 registered players.24F

25  

   Local P Global P 
(14) a. Tyson Chandler is the tallest. 15/16 465/496 
 b. Tyson Chandler is the smallest. 0/16 9/496 
 c. Troy Daniels is tall. 1/7 101/247 
 d. Troy Daniels is small. 8/8 247/247 
 e. Tacko Fall is taller (smaller) than Chris Clemons. --- 1/1 (0/1) 
 f. The players of Dallas Mavericks are taller than those of Utah Jazz. --- 162/289 
 g. The players of Chicago Bulls are the tallest. --- 4152/8160 
 h. The players of Dallas Mavericks are tall. --- 2816/4080 

 
25 Data were taken from the official website of the National Basketball Association (https://www.nba.com/) in April 2020. 

https://www.nba.com/
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The superlative in (14a) can be evaluated in the sample of the 17 Houston Rockets players 
Tyson Chandler is a member of, or in the sample of all 497 NBA players. Tyson has the maximal 
length of 213 cm (7 ft) in his own team, but shares this height with co-player Isaiah Hartenstein. 
The comparison class comprises of the Houston Rockets players without Tyson Chandler, while 
the set of positive comparisons includes 15 players. The truth degree of Tyson Chandler is the 
tallest is 94% (P = 15/16). Now, if all NBA players are taken into consideration, then the truth 
degree is 94% (P = 465/496) (465 players are smaller than Tyson Chandler) which coincidentally 
equals the previous truth degree. In (14b), the set of positive comparisons (for small) is empty 
for the Houston Rockets team, but counts nine players for the entire NBA (nine NBA players are 
taller than Tyson Chandler). The truth degree of Tyson Chandler is the smallest is thus 0% (P = 
0/16), respectively 2% (P = 9/496). 25F

26  
In the comparison-class approach, (14c), Troy Daniels is tall is true, if Troy happens to be 

taller than the average degree (Bartsch and Vennemann 1973). There are three measures of 
central tendency in statistics: the mean,26F

27 the median27F

28, and the mode.28F

29 If the heights are 
normally distributed, all three measures coincide (mode = median = mean). However, if the 
distribution is positively skewed, then mean > median > mode; if it is negatively skewed, then 
mode > median > mean. A problem thus arises as to which average measure should be selected 
in the evaluation of (14c). Kennedy (2007) alludes to the same problem when discussing the truth 
of A rent of $725 is expensive for an apartment on this street, assuming that the median rent for 
apartments on the street is $700 and that there are a few apartments with rents significantly 
higher than $725. He concludes that in this case, one would be reluctant to judge this sentence 
as true. Owing to these few very expensive apartments, Kennedy seems to refer to a positively 
skewed rent distribution. If we take the mean rent (say at $750) rather than the median rent 
($700), the statement comes out as false (as one would expect). More generally, we can take 
whatever measure has a greater value (i.e. the mean or the median).  

In Troy Daniels’s team, the Denver Nuggets, the mean (201.87cm) is slightly higher than the 
median (201.50cm), while the median (199.80cm) is a bit higher than the mean (199.18cm) in 
the entire NBA. However, these differences do not play a role in this particular example; we can 
take either the mean or the median value. Thus, the sample of (14c) consists of the lower half of 
Denver Nuggets players (resp. NBA players) without Troy. With these specifications, the sample 
consists of seven DN players (resp. 247 NBA players). The set of positive comparisons 
comprises of one DN player since Troy Daniels, whose height is 193 cm (6 ft 4 in), is only taller 
than one other player (resp. taller than 101 NBA players). The truth degree of Troy Daniels is tall 
is thus 14% (P = 1/7) (resp. 41% or P = 101/247).   

The sample for the antonymic adjective small in (14d) uses the upper half of the DN (/NBA) 
players without Troy, which counts eight (/247) players. The set of positive comparisons consists 
of those DN (/NBA) players who are taller than the medium height 201.5 cm (/199.8 cm). Given 
Troy’s height of 193 cm, this set counts eight (/247) elements. Therefore, the statement Troy 
Daniels is small is maximally true with true degree one in both contexts.  

Comparative predicates like taller/smaller in (14e) employ as sample, the singleton set 
containing the standard of comparison, Chris Clemons. The set of positive comparisons only 
includes Chris Clemons if Tacko Fall is actually taller/smaller than Chris Clemons and is empty, 
if not. Given that Chris Clemons of Houston Rockets is the smallest NBA player with 175 cm       
(5 ft 9 in) and Tacko Fall of Boston Celtics the tallest NBA player with 226 cm (7 ft 5 in), the 

 
26 The fact that superlative or comparative sentences are evaluated with intermediate truth values does not mean that 
these sentences can be graded or modified by syntactic modifiers (very, slightly etc.). Truth and grammaticality are 
two separate notions. 
27 The mean is defined as the sum of measurements divided by the number of observations.  
28 The median is the value that has an equal number of observations above and below.  
29 The mode is the value with the highest frequency (or the highest number of observations). Due to the relatively small 
team heights, the mode is not a useful measure of central tendency here.  
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statement Tacko Fall is taller than Chris Clemons has truth degree one and Tacko Fall is smaller 
than Chris Clemons the truth degree zero.  

A comparison of two teams like in (14f) may have many truth degrees depending on how 
many players of the first team surpass how many players of the second team. If Σ1 denotes the 
Dallas Mavericks and Σ2 the Utah Jazz, then the sample for (14f) represents the set of all possible 
comparisons, which is Σ = Σ1×Σ2. The set of positive comparisons consists of X = {(x1, x2) | x1 > 
x2} and the statement The players of Dallas Mavericks are taller than the players of Utah Jazz is 
true to the degree 56% (P = 162/289). The size of X can be established by counting the number 
of positive comparisons (refer to appendix, item G). If all DM players were taller than all UJ 
players, the set X would be equal to Σ and the truth degree one; if, on the other hand, all DM 
players were smaller than all UJ players, the set X would be empty and the truth degree zero. 
Therefore, the reality lies between these two extremes.  

If a team like the Chicago Bulls in (14g) is not compared to one other particular team but to 
all teams of the NBA, then the sample consists of all possible comparisons Σ = Σ1×Σ2 between 
Chicago Bulls players (Σ1) and other NBA players pooled together ( =

2 1\kΣ Σ Σ ). Since the 
number of NBA players without Chicago Bulls is 480, the sample size is 8160 = 17×480. With the 
set of positive comparisons being defined as X = {(x1, x2)  ∈ Σ | x1 > x2}, we can count the size of 
X as the number 4152 (refer to appendix, item H). Consequently, the statement The players of 
Chicago Bulls are the tallest is true to the degree of 51% (P = 4152/8160).  

In the last example (14h), the players of the Dallas Mavericks only need to be compared to 
the lower half of the NBA players without Dallas Mavericks, which amounts to 240 players. In this 
sample (Σ = Σ1×Σ2), we can count the set of positive comparisons X to have 2816 elements (refer 
to appendix, item I). Stating The players of Dallas Mavericks are tall carries a 69% (P = 2816/4080) 
kernel of truth.   

Positive adjectives can have borderline cases and thus give rise to borderline contradictions 
(section 1.1) and to the sorites paradox (Kennedy 2007; Sorensen 2018). The sorites paradox 
has fascinated philosophers because it attempts to demonstrate vague properties by using the 
mathematical proof technique of complete induction. The sorites paradox falsely suggests that 
the induction step is valid for all increments although it is not. (To put it differently, vague 
predicates only allow partial not complete induction.)  

 
(15) a. Borderline Case: Jimmy Butler of Miami Heat is tall. 
 b. Borderline Contradiction: Jimmy Butler of Miami Heat is tall and not tall. 
(16) a. Sorites Paradox Base Step: A 175 cm tall NBA player is small.  
 b. Induction Step: If an n cm tall NBA player is small, then an n+1 cm 

tall NBA player is also small. 
 c. Conclusion: Therefore, a 226 cm tall NBA player is small. 

 
Since Jimmy Butler’s height of 199,80 cm is the medium height of all 497 NBA players, it 

implies that he is taller than 248 players and also smaller than 248 players. The problems of 
borderline cases and borderline contradiction are settled by assigning the truth degree 50% to 
(15a) and the truth degree 0% to (15b). The Sorites Paradox is solved because the induction 
step becomes invalid for n = 199 cm.  

 
3. Sample Logic and Complex Sentences 
We assume a population Ω of events, states, and entities, from which we draw samples Σ. In 
general, a sample comprises of n-tuples of events with variable length n. Let φ and ψ be two 
formulas with samples Σφ, Σψ and property sets Xφ, Xψ.  

 
3.1 Negation, Conjunction, Disjunction 
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(17)  Definition of Negation: 
  The negation ¬φ is interpreted by the size ratio of the property set X¬φ = Σφ \ Xφ and 

the sample Σ¬φ = Σφ: 
X \ X¬φ φ φ

¬φ φ

Σ
φ

Σ Σ
¬ = = 

.  

 
In section 2, most simple sentences are not genuine atomic propositions; instead, they 

represent hidden conjunctions or disjunctions. Atomic propositions can be defined in Sample 
Logic as those simple sentences that have a singleton sample. To begin with, I illustrate for three 
types of atomic propositions, partly quoted from section 1.1, how conjunction is defined in Sample 
Logic. Example (18a) conjoins two independent propositions. Their pooled sample and property 
sets are defined as Cartesian products. Examples (18b) and (18c) combine two pairs of 
dependent propositions. The difference between the two examples is that their component 
samples have empty intersection in (18b) and are identical in (18c). Accordingly, the property set 
are defined as union in (18b), and as intersection in (18c).29F

30  
 

(18)  Atomic propositions (Example) Sample Σφ∧ψ and Property Set Xφ∧ψ P 

 a. φ: Nicolas Batum is taller than Cody Zeller and  Σφ∧ψ = {(Batum, Zeller)} × {(Chealey, Rozier)} 0% 
  ψ: Joe Chealey is taller than Terry Rozier. Xφ∧ψ = ∅ × {(Chealey, Rozier)} = ∅ 
 b. φ: Joe Chealey is taller than Caleb Martin and  Σφ∧ψ = {(Chealey, Martin)} ∪ {(Chealey, Rozier)} 

50%   ψ: Terry Rozier.  Xφ∧ψ = ∅ ∪ {(Chealey, Rozier)} 
 c. φ: Kobi Simmons is not taller and Σφ∧ψ = {(Simmons, Martin)} ∪ {(Simmons, Martin)} 

100%   ψ: not smaller than Caleb Martin. Xφ∧ψ = {(Simmons, Martin)} ∩ {(Simmons, Martin)} 
  
We now turn to the general conjunction of two propositions. Two independent sentences 

have samples where no item in one sample is correlated to any item in the other sample. 
Sentences are dependent when their semantic relation is one of subordination or of coordination. 
Both sentences are on equal terms in a coordination relation and exhibit samples where at least 
one item in the first sample is corelated to another item in the second sample. Meanwhile, one 
sentence provides the frame for the other in a subordinated relation. The sample of a 
subordinated sentence contains at least one n-tuple of items in which one k-tuple of the other 
sample is woven (k < n). Uncorrelated samples are pooled as Cartesian products, coordinated 
samples as unions, and subordinated samples as (abstract) intersections.  

 
(19)  Definition of Conjunction and Disjunction: 
 a. Pooling 
  

   
  Taking these pooling principles into consideration, the conjunctive and disjunctive 

samples and property sets are defined as follows: 

 
30 The names in the samples are provided as identifiers of the body height: Cody Zeller 213 cm; Nicolas Batum 206 
cm; Kobi Simmons 196 cm; Caleb Martin 196 cm; Joe Chealey 193 cm; and Terry Rozier 185 cm.  
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 b. Σφ and Σψ are independent (uncorrelated) 

  Property Sets: Xφ∧ψ = Xφ  × Xψ and 
Xφ∨ψ = (Xφ  × Xψ) ∪  

(X¬φ × Xψ) ∪  
(Xφ  × X¬ψ) 

Sample: Σφ∧ψ = Σφ∨ψ = Σφ  × Σψ 
 

  

 c. Σφ and Σψ are coordinated 

 

  Property Sets: Xφ∧ψ = (Xφ  ∩ Xψ) ∪  
(Xφ \ Σψ) ∪  
(Xψ \ Σφ) and 

Xφ∨ψ = Xφ  ∪ Xψ  
Sample: Σφ∧ψ = Σφ∨ψ = Σφ ∪ Σψ 

         
  Subcases (i) Σφ ∩ Σψ = ∅ (ii) Σφ ⊂ Σψ and Σφ  ≠ Σψ (iii) Σφ = Σψ 
    “Interdependency”  “Skewed dependency”  “Interrelation” 

  Property Sets:     Xφ∧ψ = 

Xφ∨ψ = 

Sample: Σφ∧ψ = Σφ∨ψ = 

 Xφ ∪ Xψ;  
Xφ ∪ Xψ; 

Σφ ∪ Σψ 

 (Xφ ∩ Xψ) ∪ (Xψ \ Σφ); 
Xφ ∪ Xψ; 
Σψ 

 Xφ ∩ Xψ;  
Xφ ∪ Xψ; 
Σφ = Σψ 

   
 d. Σψ is subordinated to Σφ   
  Property Sets: Xφ∧ψ = {(b1,…bn) ∈ Xψ  ∃(a1,…,ai) ∈ Xφ: a1 = b1,…, ai = bi, and 

∀(c1,…,cj) ∈ X¬φ: c1  ≠ b1 or…or cj ≠ bj} 
Xφ∨ψ = Xφ∧ψ ∪ X¬φ∧ψ ∪ Xφ∧¬ψ  

Sample: Σφ∧ψ = Σφ∨ψ = {(b1,…bn) ∈ Σψ  ∃(a1,…,ai) ∈ Σφ: a1 = b1,…, ai = bi}  

 e. The truth degrees of conjunction and disjunction are defined as follows: 

ψ

ψ

ψ φ∧

φ∧

φ ∧ = 

X

Σ
 and ψ

ψ

ψ φ∨

φ∨

φ ∨ = 

X

Σ
. 

 
With these specifications, it is possible to show that ⋅ : SENT → [0,1] is a probabilistic 

evaluation that satisfies a slightly weakened version of the Kolmogorov axioms. Considering the 
fact that we are dealing with samples and not with populations, it is not possible to demonstrate 
K3 for dependent sentences only for independent sentences (K3').30F

31  However, we can 
demonstrate the inequality of axiom K4 for independent and coordinated sentences (for proof 
refer to appendix, item J):  

 
(20) K1 0 1φ≤ ≤ 

; 
 K2 0φ ∧ ¬φ =  and 1φ ∨ ¬φ =  ; 
 K3' If φ and ψ are independent and ψ 0φ ∧ = 

, then ψ ψφ ∨ φ= +     
.  

 K4 If φ and ψ are independent or coordinated, then ψ ψφ ∨ φ≤ +     
.  

 
 

31 Besides independent propositions, K3 also holds for interrelations, see (19c-iii).  
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Furthermore, it follows that 1φ φ¬ = −   
, that ⋅  is idempotent and coherent, and that 

the two de Morgan laws hold (for proof, refer to appendix, item K).  
 

3.2 (In)dependent Propositions 
Intuitively, two events are independent and have no causal impact on each other if and only if 
they are evaluated in two unrelated samples. In Sample Logic and in accordance with Probability 
Theory, we have ψ ψφ ∧ = φ ⋅     

 for two independent events; this is an immediate 
consequence of the definition of conjunction in (19b). However, this equation does not hold if the 
events are dependent. To illustrate this point, consider one pair of independent examples and 
two pairs of dependent examples, that is, one pair of coordinated and one pair of subordinated 
examples.  

 
(21) a. φ: Clorox will strongly increase sales of its disinfecting products and 21%φ =   
 b. ψ: the car rental company Hertz will file for bankruptcy next year. ψ 2%= 

 
 c. ψ ψ ψ,φ ∧ = φ < φ⋅         

.  ψ 0.5%φ ∧ =   

(22) a. φ: Clorox will strongly increase sales of its disinfecting products and 21%φ =   
 b. ψ: Kimberley-Clark will greatly boost sales of its paper towels next year. ψ 19%=   
 c. ψ ψ,φ ∧ < φ     

.  ψ 17%φ ∧ = 
 

(23) a. φ: There is a pandemic next year and 82%φ =   
 b. ψ: Clorox will strongly increase sales of its disinfecting products. ψ 21%=   
 c. ψ ψφ ∧ < φ<     

.  ψ 71%φ ∧ = 
 

 
In (21), Clorox and Hertz are mutually independent in their economic performance. In 

addition to the fact that they do not partner or compete with each other, they also do not share 
partners or competitors. Their samples are uncorrelated and the conjunctive truth degree is the 
multiplication of the component degrees (according to 19b).  

In (22), by contrast, Clorox and Kimberley-Clark partly depend on each other for their 
performance. They sell complementary products that final consumers often purchase together. 
For instance, the online retailer behemoth Amazon claims that purchases of Clorox disinfecting 
bleach systematically trigger and are triggered by purchases of Scott paper towels, a brand of 
Kimberley-Clark. The conjunctive truth degree is calculated according to (19c), but does not fall 
under one of the special cases. (For a detailed breakdown, refer to appendix, item L.)  

The economic performance of Clorox in (23) is subordinated to the occurrence of a 
pandemic. As macroeconomic predictor, epidemics filter out companies in the Clorox sample that 
did business in a year without epidemic. Of the 349 entries in the Clorox sample, 96 entries relate 
to companies operating during a past epidemic with the same reproduction (β) and recovery (γ) 
rates as Covid-19. About 68 entries refer to a year with a pandemic and to companies that 
witnessed an increase in their sales by at least nine percent. The majority of comparative data 
stem from the Spanish Flu in 1918 when the disinfecting industry got started (Stowe 2018). The 
conjunctive truth degree is determined according to (19d) and is 71% (P = 68/96), refer to 
appendix, item M.  

Furthermore, three special cases of coordinated dependency exist, which we label as 
interdependency, skewed dependency and interrelation. Interdependency refers to two samples 
with an empty intersection (see 19c-i); skewed dependency denotes a situation where the first 
sample is strictly included in the second (see 19c-ii); finally, interrelation is a kind of dependency 
where both samples are identical (19c-iii). Examples (24)-(26) provide an illustration.  
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(24) a. φ: The Dallas Mavericks players are taller than the Utah Jazz… 56%φ = 
 

 b. ψ: …and Denver Nuggets players. ψ 40%= 
 

 c. ψ ψφ ∧ < φ<     
 48%ψφ ∧ = 

 

(25) a. φ: The Dallas Mavericks players are taller than the Utah Jazz players, 56%φ = 
 

 b. ψ: but they are not the tallest team of the NBA. ψ 53%= 
 

 c. ψ ψ,φ ∧ < φ     
 52%ψφ ∧ = 

 

(26) a. φ: The Dallas Mavericks players are taller and  56%φ = 
 

 b. ψ: heavier than the Utah Jazz players. ψ 54%= 
 

 c. ψ ψ,φ ∧ < φ     
 ψ 44%φ ∧ = 

 
 
A comparison of the Dallas Mavericks and the Utah Jazz players in (24) is interdependent 

with the comparison of the Dallas Mavericks and the Denver Nuggets players (refer to appendix, 
item N). In (25), the comparisons of Dallas Mavericks and Utah Jazz players (289 items) are 
contained in the much larger comparison class of Dallas Mavericks and NBA players (8160 items). 
The dependency is skewed towards the second sentence (refer to appendix, item O). In (26), we 
compare the height and weight of two teams. These variables exhibit an interrelation, the third 
kind of special dependency (refer to appendix, item P).  

For dependent sentences, the conjunctive truth degree is not necessarily smaller than both 
component degrees. The two interdependent sentences in (24) exemplify the situation where the 
conjunctive degree (48%) sits in between the component degrees (40% and 56%). The same 
may also hold true for propositions with skewed dependency. If we make a slight modification in 
example (25) as in (27), then the relationship of the conjunctive degree and its component 
degrees tips over (refer to appendix, item Q).  

 
(27) a. φ: The Dallas Mavericks players are taller than the Denver Nuggets players, 40%φ = 

 
 b. ψ: and even the tallest team of the NBA.  ψ 47%= 

 
 c. ψ ψφ φ ∧ =<     

 47%ψφ ∧ = 
 

 
 
This state of affairs contrasts with general probability functions P where we always have 

( ) ( )∩ ≤A B AP P  and ( ) ( )∩ ≤A B BP P . Yet, the possibility of ψφ φ ∧<   
 is perfectly 

consistent with language intuition in linguistics. This discrepancy is attributed to the fact that 
Sample Logic only satisfies the weakened version of Kolmogorov axiom K3. For independent 
propositions and interrelations, which satisfy axiom K3, we always have ψ ψ,φ ∧ ≤ φ     

. 
Finally, the conjunction in Sample Logic satisfies the following properties that play a role in 
evaluating the conditional.  

 
(28)  Lemma (Properties of Conjunction in Sample Logic):  

 a. Conjunctive truth may not surpass both component truths: ( )ψ max ψ,φ ∧ ≤ φ      . 

 b. If φ and ψ are independent, then ψ ψ0  1φ ∧ φ φ= ⇔ = =       or .  
 c. If φ and ψ are in interrelation, then ψ ψφ ∧ φ φ= ⇒ ≤       

.  
 
 

3.3 Conditional and Biconditional 
In line with Probability Theory, conditional clauses are interpreted as the truth degree of 
antecedent and consequent divided by the truth degree of the antecedent (Gut 2005: 17; 
Kaufman 2005: 197). The biconditional if and only if ( ψφ ↔ ) cannot be evaluated as the 
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conjunction of the two conditionals ( ) ( )ψ ψφ → ∧ → φ . This definition is tight to the material 
conditional used in Classical Logic. In Sample Logic, the biconditional is the quotient of the two 
component truth degrees depending on which one is greater (and provided that their truth degree 
is not zero).  
  
(29)  Definition of Conditional and Biconditional:  
  Let φ and ψ be two formulas with samples Σφ, Σψ and property sets Xφ, Xψ.  
 a. The sample and property set of the conditional are defined as follows where {∅} is the 

singleton set:  

Property Set: 

{ }

ψ ψ ψ

ψ ψ ψ ψ

ψ ψ

    

    

    

if and

if and

if or

φ∧ φ φ φ∧ φ φ∧ φ

φ→ φ∧ φ φ φ∧ φ φ∧ φ

φ φ∧ φ φ∧ φ

 × ≠ ∅ × < ×
 × ≠ ∅ × < ×


∅ = ∅ × = ×

=

X Σ X X Σ Σ X

X Σ X X Σ X X Σ

X X Σ Σ X

 

Sample: 

{ }

ψ ψ ψ

ψ ψ ψ ψ

ψ ψ

    

    

    

if and

if and

if or

φ∧ φ φ φ∧ φ φ∧ φ

φ→ φ∧ φ φ φ∧ φ φ∧ φ

φ φ∧ φ φ∧ φ

 × ≠ ∅ × < ×
 × ≠ ∅ × < ×


∅ = ∅ × = ×

=

Σ X X X Σ Σ X

Σ X Σ X Σ X X Σ

X X Σ Σ X

 

 b. The biconditional is interpreted by the following sample and property set:  

Property Set: 
( ) ( )

{ }

ψ ψ ψ ψ

ψ ψ ψ ψ

ψ

ψ ψ

ψ ψ

  ,   

  ,   

        

  

if and

if and

if and or and

if

φ φ φ φ

φ φ φ φ

φ↔

φ φ

φ φ

 × ≠ ∅ ≠ ∅ × < ×

 × ≠ ∅ ≠ ∅ × < ×

∅ = ∅ ≠ ∅ ≠ ∅ = ∅


∅ × = ×

=

X Σ X X X Σ X Σ

X Σ X X X Σ X Σ
X

X X X X

X Σ X Σ

 

Sample: 

{ } ( )

ψ ψ ψ ψ

ψ ψ ψ ψ ψ

ψ ψ ψ

  ,   

  ,   

      

if and

if and

if or or

φ φ φ φ

φ↔ φ φ φ φ

φ φ φ

 × ≠ ∅ ≠ ∅ × < ×
 × ≠ ∅ ≠ ∅ × < ×


∅ × = × = ∅ = ∅

=

X Σ X X X Σ X Σ

Σ X Σ X X X Σ X Σ

X Σ X Σ X X

 

 c. The truth degrees of the conditional and biconditional are defined as follows: 

ψ

ψ

ψ φ→

φ→

φ → = 

X

Σ
 and ψ

ψ

ψ φ↔

φ↔

φ ↔ = 

X

Σ
. 

 
These bulky samples and property sets do ensure that the conditional and biconditional are 

probabilistic, but the conditional and biconditionals need to flip both the numerator and 
denominator when the conjunctive truth degrees surpasses one of the component truth degree. 
The following lemma summarizes the relationship shared between the conjunction, conditional, 
and biconditional (for proof, refer to appendix, item R).  
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(30)  Lemma:  

 a. 

ψ     ψ  
ψ

    ψ
ψ

0

0

φ ∧ φ φ ∧ φ φφ → =  φ φ φ φ ∧
 φ ∧

> <

> <

 

     

 

 

 

     

 

if and

if and
 

 b. ψ 0φ → = 
 iff 0φ > 

 and ψ 0φ ∧ = 
  

 c. ψ 1φ → = 
 iff 0φ = 

 or ψφ ∧ φ=   
  

 d. 

ψ ψ   ψ   ψ ψ
ψ
ψ   ψ   ψ ψ

ψ ψ
ψ

ψψ ψ   ψ ψ

ψ ψ   ψ ψ
ψ

0, 0 0

0, 0 0

0

0

φ → = φ φ ∧ φ → φ φ
→ φ φ = φ φ ∧ φ φ →φ ↔ = 

 φ → → φ = φ ∧ φ
 φ


φ φ → → φ = φ φ ∧


> > < ≤ ≤

> > < ≤ <

⋅ < < ≤

⋅ < < ≤

   

         

   

   

         

   

 

 

         

 

 

         

 

if and

if and

if

if

 

 e. ψ 0φ ↔ = 
 iff ( 0φ = 

 and ψ 0> 
) or ( 0φ > 

 and ψ 0= 
) 

 f. ψ 1φ ↔ = 
 iff ψφ =   

  
 g. If φ and ψ are independent, then ψ ψ1 0  1φ → φ= ⇔ = =     or   
 h. If φ and ψ are in interrelation, then ψ ψ1φ → φ= ⇒ ≤     

. 
 
The probabilistic conditional is reflective of basic language intuition of if-clauses in human 

language, and the biconditional of if and only if-clauses. When two independent propositions 
occur as the antecedent and consequent, as in (31), then the truth degree of the conditional is 
equal to the truth degree of the consequent. The following examples denote modifications of the 
conjunctions (21)-(27). For the calculation of the truth degree, refer to appendix, item S. 

 

(31) a. φ: (If) Clorox will strongly increase sales of its disinfecting products (/iff) 
ψ 2%

ψ 21%
ψ

ψ 11%

21%
2%

φ → =
φ

→ φ =
φ ↔ =

=
=

 

 

 

 

 

 
 b. ψ: (then) the car rental company Hertz will file for bankruptcy next year. 

 

(32) a. φ: (If) Clorox will strongly increase sales of its disinfecting products (/iff) 
ψ 84%

ψ 93%
ψ

ψ 91%

21%
19%

φ → =
φ

→ φ =
φ ↔ =

=
=

 

 

 

 

 

 
 b. ψ: (then) Kimberley-Clark will greatly boost sales of its paper towels next year. 

 

(33) a. φ: (If) there is a pandemic next year (/iff) 
ψ 87%

ψ 30%
ψ

ψ 26%

82%
21%

φ → =
φ

→ φ =
φ ↔ =

=
=

 

 

 

 

 

 
 b. ψ: (then) Clorox will strongly increase sales of its disinfecting products. 

 

(34) a. φ: (If) the Dallas Mavericks players are taller than the Utah Jazz players (/iff) 
ψ 86%

ψ 83%
ψ

ψ 71%

56%
40%

φ → =
φ

→ φ =
φ ↔ =

=
=

 

 

 

 

 

 
 b. ψ: (then) they are also taller than the Denver Nuggets players. 

 

(35) a. φ: (If) the Dallas Mavericks players are taller than the Utah Jazz players (/iff) 
ψ 79%

ψ 82%
ψ

ψ 96%

56%
54%

φ → =
φ

→ φ =
φ ↔ =

=
=

 

 

 

 

 

 
 b. ψ: (then) they are also heavier than the Utah Jazz players. 
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(36) a. φ: (If) the Dallas Mavericks players are taller than the Denver Nuggets players (/iff) 
ψ 74%

ψ 100%
ψ

ψ 74%

40%
47%

φ → =
φ

→ φ =
φ ↔ =

=
=

 

 

 

 

 

 
 b. ψ: (then) they are even the tallest team of the NBA. 

 
In Sample Logic, the conditional is not a (fuzzy) residual conditional, because, when 

ψφ ≤   
, it is not necessarily the case that ψ 1φ → = 

. (36) provides a counterexample. 
Furthermore, neither is the conditional in Sample Logic a material conditional, nor is the 
biconditional a material biconditional. In fact, the truth degrees of both the material conditional 
and biconditional are far apart from their probabilistic counterparts, as evidenced in examples 
(31)-(36). For the calculation of the material truth degrees, refer to appendix, item T. 

 
Example φ   ψ   ψφ → 

 ψφ ∨¬ 
 ψφ ↔ 

 ( ) ( )ψ ψ¬φ ∨ ∧ ¬ ∨ φ   

(31) 21%  2%  2%  5998180%
75384

=  11%  5860178%
75384

=  

(32) 21%  19%  84%  35056%
627

=  91%  12820%
627

=  

(33) 82%  21%  86%  9498%
96

=  26%  9094%
96

=  

(34) 56%  40%  86%  23542%
561

=  71%  0%  

(35) 56%  54%  79%  25588%
289

=  96%  24183%
289

=  

(36) 40%  47%  74%  392048%
8160

=  74%  2723%
8160

=  

Table 2: Comparison of the Material and Probabilistic Conditionals/Biconditionals 
 
The truth degrees of the material conditionals seem counterintuitive. For example, the truth 

degree of (32) (If Clorox strongly increase sales of its disinfecting products next year, then 
Kimberley-Clark will greatly boost sales of its paper towels), which is 56%, appears to be too low. 
Since both companies are correlated, good performance of one is likely to entail good 
performance of the other. By contrast, the corresponding truth degree of the probabilistic 
conditional (which is 84%) appears to be more reasonable.  

However, if we consider ψ¬φ ∨  as inequivalent to the conditional and interpret it as a 
disjunction of two related alternatives (Simons 2001), then the truth degrees reflect basic 
language intuition: Clorox will not strongly increase sales of its disinfecting products next year, 
or Kimberley-Clark will greatly boost sales of its paper towels. The truth degree of 56% indicates 
that the two alternatives occupy approximately half of all possibilities (other options include strong 
performance by Clorox and mediocre to bad performance by Kimberley-Clark at about 44%).  

 
3.4 Conditional (In)dependence  
In the case of complex conditionals, the antecedent and/or the consequent are complex 
sentences. I shall concentrate on conditionals where the consequent is a conjunction and, in 
particular, on the notion of conditional independence. (Unconditional) independence is defined 
by the conjunctive property ψ ψφ ∧ = φ ⋅     

discussed in section 3.2. The most common 
formal definition of conditional independence is as follows (Spohn 1980, Studený 2002):31F

32 
 

(37)  Definition (Conditional Independence) 
  φ and ψ are conditionally independent of χ iff ( )χ ψ χ χ ψ→ φ ∧ = → φ →⋅      .  

 
32 Humberstone (2020) discusses a range of alternative (proof-theoretic) concepts of independency.  
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We can understand unconditional dependence as a proxy for the concept of direct causation 

where the occurrence of an event causes the manifestation of another dependent event. 
Conditional dependence then represents the idea of indirect causation.32F

33 Two dependent events 
may be falsely viewed as causes of one another until a third event becomes known that is the 
real cause for one or both events. Spohn (1980) presents several entertaining examples of 
correlation studies in social sciences.  

As two distinct properties, unconditional (in)dependence (of two events φ and ψ) and 
conditional independence (of φ and ψ relative to χ) do not entail each other. In Sample Logic, the 
following relationship between conditional and unconditional independence holds (for proof, refer 
to appendix, item U).33F

34  
 

(38)  Lemma 
 

a. If 
 (i) φ and ψ are independent, and 

(ii) (χ and φ) or (χ and ψ) are independent, then 
φ and ψ are conditionally 
independent of χ.  

 
b. If 

 (i) φ and ψ are conditionally independent of χ and 
(ii) (χ and φ) and (χ and ψ) are independent,  then φ and ψ are independent.  

 
This result is in close alignment with linguistic intuition that I shall illustrate with three 

examples. In (39), the antecedent and consequent are both conditionally and unconditionally 
independent. Meanwhile, in (40), they are unconditionally independent and conditionally 
dependent. Similarly, in (41), they are both conditionally and unconditionally dependent (for the 
calculation of the truth degrees, refer to appendix, item V).  

 
(39)  φ and ψ are mutually independent and conditionally independent of χ 

 a. χ: If there is a recession next year, then  ψ 9%
χ 64%

ψ 9%
21%

χ 21%
ψ 41%

χ ψ 41%

φ ∧ =
=

φ ⋅ =
φ =

→ φ =
=

→ =

 

 

   

 

 

 

 

  b. φ: Clorox will strongly increase sales of its disinfecting products and 
 c. ψ: Bimbo will neither hike nor diminish its bakery business. 
 d. ( )χ ψ 9%→ φ ∧ =   and χ χ ψ 9%→ φ ⋅ → =    . 

 
(40)  φ and ψ are mutually independent and conditionally dependent of χ 

 a. χ: If there is a pandemic next year, then  ψ 0.5%
χ 82%

ψ 0.5%
21%

χ 87%
ψ 2%

χ ψ 72%

φ ∧ =
=

φ ⋅ =
φ =

→ φ =
=

→ =

 

 

   

 

 

 

 

  b. φ: Clorox will strongly increase sales of its disinfecting products and 
 c. ψ: the car rental company Hertz will file for bankruptcy. 
 d. ( )χ ψ 95%→ φ ∧ =   and χ χ ψ 62%→ φ ⋅ → =    . 

 
(41)  φ and ψ are mutually dependent and conditionally dependent of χ 

 a. χ: If there is a pandemic next year, then  ψ 17%
χ 82%

ψ 4%
21%

χ 87%
ψ 19%

χ ψ 68%

φ ∧ =
=

φ ⋅ =
φ =

→ φ =
=

→ =

 

 

   

 

 

 

 

  b. φ: Clorox will strongly increase sales of its disinfecting products and  
 c. ψ: Kimberley-Clark will do the same for its Scott paper towels. 
 d. ( )χ ψ 91%→ φ ∧ =   and χ χ ψ 59%→ φ ⋅ → =    . 

 

 
33 For the broad linguistic literature on causation, refer to Cruse (1972), Fodor (1970) and Wolff (2003).  
34 It is not possible to prove Lemma (38) in general Probabilistic Logic, because we do not know whether from the 
independence of α and γ and from the independence of β and γ we can conclude that (α ∧ β) and γ are independent.  
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In (39), Clorox and Bimbo represent two global firms that are mutually independent in their 
performance. Both are impervious to economic recessions because the products they 
manufacture are needed both in good times and bad times.  

By contrast, the car rental company Hertz in (40) is frail to external shocks like recessions 
or pandemics. The business operations of Clorox are also affected during a pandemic, which 
serves as a catalyst, and not as an impediment. Although Hertz and Clorox operate 
autonomously, their businesses are codependent on a pandemic if one occurs. This situation is 
reflected by the truth degrees.  

Kimberley-Clark, a global manufacturer of consumer tissues, is susceptible to pandemics in 
a similar way to that of Clorox. The business operations of both firms are mutually dependent 
under normal circumstances. In the rate occurrence of a pandemic, they cling even more together, 
as indicated by the truth degrees in (41).  

 
4. Conclusion  
Sample Logic belongs to the family of probabilistic logics, allows a constructive compounding of 
truth degrees, obviates challenges related to coherence, and satisfies a range of expected 
properties (such as complementary negation or the de Morgan laws). Most importantly, Sample 
Logic bakes different types of sentence dependency into its semantics that do justice to linguistic 
data. The selected (bi)conditional in Sample Logic is the probabilistic one that is more natural 
than the material and residual (bi)conditionals. The concept of conditional dependency, which 
serves as a proxy of the linguistic idea of indirect causation, is another significant asset of Sample 
Logic.  

Over the past 50 years, linguists and philosophers introduced ontologies for individuals, 
events, situations, possible worlds, and degrees on top of the Classical Bivalent Logic in order to 
handle different sets of linguistic data. This situation has led to a proliferation of mutually 
incompatible logics. In the event a piece of linguistic data makes simultaneously reference to, 
say, degrees and possible worlds, then the “standard” linguistic analysis might quickly get opaque 
and crowded. Consider an example.  

 

(42) a. φ: If it is hot next week,  50% ψ 40%
ψ 60% ψ 80%
φ = φ ∧ =

= φ → =
   

   

 
 b. ψ: then John might go to the swimming-pool. 

 
Hitherto, the evaluation of (42) would integrate the notions of degree and possible worlds 

into the truth conditions, thus resulting in complex expressions. In Sample Logic, the conjunctive 
truth degree reveals precise information about the extent to which John’s recreation plans are 
contingent on hot weather conditions. The truth degree of the probabilistic conditional provides a 
semantic evaluation of (42).  

 
Appendix  

 
Item A (Section 1.2) 
Sauerland renewed Kamp’s argument against fuzzy logic uses the Fixed-Point Theorem of the 
Dutch mathematician Luitzen Brouwer (1881-1966) but has a gap.  
 
(43)  Sauerland (2011)’s argument against Fuzzy Logic:  
  Sauerland assumes that any fuzzy negation that is supposed to be useful in linguistics 

must be a continuous function ¬: [0,1] → [0,1], not a function that jumps. If the 
negation ¬ is continuous, then Brouwer’s well-known Fixed-Point Theorem (“Every 
continuous function f: [0,1] → [0,1] has a fixed point: x0 ∈ [0,1] with f(x0) = x0”) 
guarantees that there is value x0 ∈ [0,1] with ¬x0 = x0. This value may or may not be 
instantiated by a sentence φ (and here is the gap in his argumentation). If it is 
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instantiated, then we have φ = φ¬   
. From the decreasing properties of t-norms it 

follows that φ ∧ φ = φ ∧ φ = φ ∧ φ¬ ¬ ¬     
. With this being the case, it is not 

possible that ⋅  is both coherent and idempotent, because, on the one hand, the 
truth degree of the contradiction φ ∧ φ¬  must be zero. On the other hand, φ ∧ φ 

 and 
φ ∧ φ¬ ¬ 

 cannot be both zero. Hence there is a problem with fuzzy logic. In order to 
make a valid point against Fuzzy Logic, Sauerland would need to prove that whatever 
the evaluation of atomic proposition ⋅  and whatever the continuous fuzzy negation 
¬ are, they cannot simultaneously satisfy coherence and idempotency. Since fuzzy 
evaluations are not required to be surjective functions, we do not know whether the fix 
point of a particular fuzzy negation is instantiated by a sentence φ. If it is not 
instantiated, it would not follow that ⋅  is either incoherent or non-idempotent.  

 
Below is my proof of the lemma in section 1.2, a renewal of Kamp’s argument against fuzzy logic 
which makes full use of t-norms. As soon as we require the negation not to be reduced to zero 
and one (it does not even need to be a continuous function), Kamp’s argument follows suit.  
 
(44)  Lemma  
 a. Let [ ] [ ]20,1 0,1:⊗ →  be a t-norm on which a fuzzy evaluation ψ ψφ ∧ = φ ⊗     

 

is based. If the evaluation ⋅  simultaneously satisfy the properties of idempotency 
( φ ∧ φ = φ   

) and of coherence ( 0φ ∧ ¬φ = 
), then the negation is reduced to 

0 and 1 (for all  φ: φ¬ 
= 0 or 1).  

 b. Proof: Suppose that ⋅  satisfies the properties of idempotency and coherence. Consider 
the case where 0 φ φ< ≤ ¬   

. As the t-norm ⊗  is a monotone non-decreasing 
function in both arguments, we have φ ⊗ φ φ ⊗ φ≤ ¬       

. As ⋅  is idempotent, 
we have 0 φ ⊗ φ φ ⊗ φ< ≤ ¬       

. It follows that ⋅  is not coherent. From this 
contradiction we conclude that one of the other two cases must hold, either ( 0φ = 

 
and 1φ¬ = 

) or ( φ φ¬ <   
). We only need to pursue the last case. Again, as the t-

norm ⊗  is a monotone non-decreasing function in both arguments, it follows that 
φ ⊗ φ φ ⊗ φ φ ⊗ φ¬ ¬ ≤ ¬ ≤           

. As ⋅  is idempotent, we can reduce the 
inequality to φ φ ⊗ φ φ¬ ≤ ¬ ≤       

. As ⋅  is coherent, we have 
0 φ φ ⊗ φ= ¬ = ¬     

 what we aimed to show. 
 
Item B (Section 1.4) 
The semantics of Classical Bivalent Logic and Kleene Trivalent Logic (Priest 2001: 122) are 
defined by truth tables (where 0.5 can be interpreted as “half true” or “neither true nor false”).  
 
(45)  Classical Bivalent Logic           
  φ ¬φ  φ ∧ ψ 1 0  φ ∨ ψ 1 0  ¬φ ∨ ψ 1 0  φ → ψ 1 0 
  1 0  1 1 0  1 1 1  1 1 0  1 1 0 
  0 1  0 0 0  0 1 0  0 1 1  0 1 1 
 
(46)  Kleene Trivalent Logic                
  φ ¬φ  φ ∧ ψ 1 0.5 0  φ ∨ ψ 1 0.5 0  ¬φ ∨ ψ 1 0.5 0  φ → ψ 1 0.5 0 
  1 0  1 1 0.5 0  1 1 1 1  1 1 0.5 0  1 1 0.5 0 
  0.5 0.5  0.5 0.5 0.5 0  0.5 1 0.5 0.5  0.5 1 0.5 0.5  0.5 1 0.5 0.5 
  0 1  0 0 0 0  0 1 0.5 0  0 1 1 1  0 1 1 1 
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The truth degrees of the more complex formulas of Table 1 (section 1.4) are computed in 
Classical Bivalent Logic and Kleene Trivalent Logic as follows. The red color shows non-
equivalent values. 
 
(47)  Classical Bivalent Logic 
  

φ  ψ   ψφ ∨¬ 
 ψ 0ifφ ∧

φ
φ

> 

 

 

 ( ) ( )ψ ψφ ∨ ∧ φ ∨¬ ¬ 

 
ψ 0 ψ

ψ 0 ψ
if
if

φ < φ
 φ < φ

≤
≤

       

       

 

  1 1 1 1 1 1 
  1 0 0 0 0 --- 
  0 1 1 --- 0 --- 
  0 0 1 --- 1 --- 
 
(48)  χ  φ  ψ   ( )χ ψ→ φ ∧ 

 χ χ ψ→ φ →⋅   
 

  1 1 1 1 1 
  1 1 0 0 0 
  1 0 1 0 1 
  1 0 0 0 0 
  0 1 1 1 1 
  0 1 0 1 1 
  0 0 1 1 1 
  0 0 0 1 1 
 
(47) shows that in Classical Bivalent Logic the material conditional is also a probabilistic and 
residual conditional. The row in red of (48) demonstrates that the concept of conditional 
(in)dependence cannot be defined in general in Classical Bivalent Logic.  
 
(49)  Kleene Trivalent Logic 
  

φ  ψ   ψφ ∨¬ 
 ψ 0ifφ ∧

φ
φ

> 

 

 

 ( ) ( )ψ ψφ ∨ ∧ φ ∨¬ ¬ 

 
ψ 0 ψ

ψ 0 ψ
if
if

φ < φ
 φ < φ

≤
≤

       

       

 

  1 1 1 1 1 1 
  1 0.5 0.5 0.5 0.5 0.5 
  1 0 0 0 0 --- 
  0.5 1 1 1 0.5 0.5 
  0.5 0.5 0.5 1 0.5 1 
  0.5 0 0.5 0 0.5 --- 
  0 1 1 --- 0 --- 
  0 0.5 1 --- 0.5 --- 
  0 0 1 --- 1 --- 
 
(50)  χ  φ  ψ   ( )χ ψ→ φ ∧ 

 χ χ ψ→ φ →⋅   

  χ  φ  ψ   ( )χ ψ→ φ ∧ 

 χ χ ψ→ φ →⋅   

 
  1 1 1 1 1  0 1 1 1 1 
  1 1 0.5 0.5 0.5  0 1 0.5 1 1 
  1 1 0 0 0  0 1 0 1 1 
  1 0.5 1 0.5 0.5  0 0.5 1 1 1 
  1 0.5 0.5 0.5 0.25  0 0.5 0.5 1 1 
  1 0.5 0 0 0  0 0.5 0 1 1 
  1 0 1 0 0  0 0 1 1 1 
  1 0 0.5 0 0  0 0 0.5 1 1 
  1 0 0 0 0  0 0 0 1 1 
  0.5 1 1 1 1       
  0.5 1 0.5 0.5 0.5       
  0.5 1 0 0.5 0.5       
  0.5 0.5 1 0.5 0.5       
  0.5 0.5 0.5 0.5 0.25       
  0.5 0.5 0 0.5 0.25       
  0.5 0 1 0.5 0.5       
  0.5 0 0.5 0.5 0.25       
  0.5 0 0 0.5 0.25       
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(49) proves that the material conditional in Kleene Trivalent Logic is neither a residual nor a 
probabilistic conditional. The rows in red font in (50) shows that the concept of conditional 
(in)dependency has no foundation in this logic.  
 
In Fuzzy Logic, the ‘residual conditional’ generalizes this property of the material conditional in 
Classical Bivalent Logic: ψ 1 ψφ → = φ⇔ ≤     

. It is defined as x → y = max{z | x∗z ≤ y} 
(∗ is a t-norm). Fuzzy negation is derived from the conditional by ¬x = x → 0, see Hájek (1998: 
28-32) and Grabowski (2017: 93-95). The ‘residual biconditional’ φ ↔ ψ is defined as conjunction 
of the two residual conditionals (φ → ψ) ∧ (ψ→ φ), see Hájek (1998: 66). The three most common 
fuzzy logics are the Łukasiewicz, Gödel and Product Logics, abbreviated as Ł, LMin and LProd.  
 

(51)  Fuzzy Logics  Łukasiewicz Logic  Gödel Logic  Product Logic 

 a. ¬φ 
 

1- φ   
 1 if 0

0 if 0
φ =

 φ >

 

 

  1 if 0
0 if 0

φ =
 φ >

 

 

 

 b. φ ∧ ψ  max{0, φ  + ψ  -1}  min{ φ  , ψ  }  ψφ ⋅     
 c. φ ∨ ψ  min{ φ  + ψ  ,1}  max{ φ  , ψ  }  ( )ψ ψφ + − φ ⋅       

 

 
d. φ → ψ 

 1 if ψ
1 ψ  if ψ

φ ≤
 − φ + φ >

   

       

 
 1 if ψ

ψ  if ψ
φ ≤

 φ >

   

     

 
 1 if ψ

ψ  if ψ

φ ≤

 φ > φ

   

 

   

 

 

 
e. φ ↔ ψ 

 1 if ψ
1 ψ  if ψ
1 ψ  if ψ

φ =
 − + φ φ <
 − φ + φ >

   

       

       

 
 1 if ψ

 if ψ
ψ  if ψ

φ =
 φ φ <
 φ >

   

     

     

 
 1 if ψ

ψ  if ψ
ψ  if ψ

φ =
 φ φ <
 φ φ >

   

       

       

 

 
In Łukasiewicz Logic, the residual conditional is also a material conditional, and the residual 
biconditional is a material biconditional. Otherwise, the three types of conditional are distinct. The 
following table shows that the residual, material and probabilistic conditionals generally exhibit 
distinct truth degrees.  
 

(52)  Three (Bi)conditionals  Łukasiewicz Logic  Gödel Logic  Product Logic 

  Component Formulas:  φ   ψ   φ   ψ    φ   ψ   φ   ψ    φ   ψ   φ   ψ   
  Values:  26% 75% 75% 26%  75% 26% 67% 67%  26% 75% 75% 26% 
 a. Residual: ψφ → 

   100% 51%  26% 100%  100% 35% 
 b. Residual: ψφ ↔ 

  51% 51%  26% 100%  35% 35% 
 c. ψφ ∨¬ 

  ψφ →= 

  26% 67%  ψ   
 d. ( ) ( )ψ ψφ ∨ ∧ φ ∨¬ ¬ 

  ψφ ↔= 

  26% 67%  20% 20% 
 e. ψ  if 0φ ∧ φ φ >     

  4% 1%  35% 100%  ψ   
 f. ψ  if 0 ψ

ψ  if 0 ψ
φ < φ

 φ < φ

≤
<

       

       

  35% 35%  35% 100%  ψφ ↔ 

 

 
 
 
Item C (Section 2.2) 
The information on historical yield inversions and recessions is taken from 
https://www.investopedia.com and from Pan (2006).  
 
 

https://www.investopedia.com/
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Yield Curve 
Inversion 

Recession in USA Yield Curve 
Inversion 

Recession in USA 

--- 1937 The Roosevelt Recession 1980 1981 The Iran Crisis Recession 
--- 1945 The Union Recession 1982 --- 
--- 1948 The Post-War Recession 1988 --- 
--- 1953 The Post-Korean War Recession 1989 1990 The Gulf War Recession 
1956 1957 The Eisenhower Recession 1998 --- 
1959  1960 The “Rolling Adjustment” Recession 2000 2001 The 9/11 Recession 
1965 --- 2006 2008 The Great Recession 
1969 1969 The Nixon Recession 2019  
1972 1973 The Oil Crisis Recession   
1978 1980 The Energy Crisis Recession   

Table 3: Yield Curve inversions and recessions in the USA since 1937 

 
Item D (Section 2.2) 
The truth degree of χ (There will be a pandemic next year) crucially relies on data available in 
2019. Table 4, presenting a daily breakdown of cases, deaths, and discharges for Wuhan in 
December 2019, is derived from a WHO-China document published by the World Health 
Organization on 28-February-2020 (WHO 2020). Although the cases are included in this 
document (p.6), the death and discharge numbers are extrapolated from two pieces of 
information reported on p. 12 and p.14: Cases have an outcome after approximately 17 days of 
infection, with the crude fatality ratio on 20-February-2020 being 3.8%.  
 
Day Cases Deaths Recoveries Day Cases Deaths Recoveries Day Cases Deaths Recoveries Day Cases Deaths Recoveries 

02 1 0 0 10 1 0 0 18 4 0 0 26 11 0 2 
03 0 0 0 11 2 0 0 19 3 0 1 27 29 0 2 
04 0 0 0 12 4 0 0 20 12 0 0 28 13 0 4 
05 0 0 0 13 0 0 0 21 5 0 0 29 17 0 0 
06 0 0 0 14 0 0 0 22 10 0 0 30 21 0 0 
07 0 0 0 15 4 0 0 23 12 0 0 31 18 1 3 

08 1 0 0 16 2 0 0 24 12 0 1 Total: 203 1 13 
09 0 0 0 17 9 0 0 25 12 0 0     

Table 4: Covid-19 Index Case and course of first thirty days in Wuhan (December 2019) 

 
In mathematical epidemiology, the SIR Model (Susceptible-Infected-Removed Model) uses these 
initial data to predict the future course of a contagious disease (Hethcote 1989). In particular, 
health officials employ these data to set, or rather to approximate, the parameters β (the number 
of people an infective person transmits the disease to on a daily basis) and γ (the proportion of 
infected people who die or recover from the disease on a daily basis). Every contagious disease 
splits a population of size N (Wuhan 11,9M) into three compartments on any given day (t) of its 
course:  
 

- S(t): the number of susceptible individuals on day t who can be but are not yet infected;  
- I(t): the number of infected individuals who are transmitting the disease on day t; 
- R(t): the number of individuals who are removed on day t from the susceptible/infective 

interaction by recovery, isolation, or death.  
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Let s(t) = S(t)/N, i(t) = I(t)/N and r(t) = R(t)/N be the population fractions of these three groups, for 
which we have s(t) + i(t) + r(t) = 1. The three functions s(t), i(t) and r(t) are the unique solutions 
of an initial value problem (IVP), that is, of three differential equations with three initial conditions:  
 

Linear Differential Equations of first order: Initial Conditions: Wuhan Initial Conditions:25 
- s'(t) = - β·s(t)·i(t) 
- i '(t) = β·s(t)·i(t) - γ·i(t) 
- r '(t) = γ·i(t) 

- s(t0) = s0  
- i(t0) = i0 
- r(t0) = r0 

- s(30) = 0.99998294  
- i(30) = 0.00001588 
- r(30) = 0.00000117 

 
Given that the first 30 days in Wuhan provide the blueprint of Covid-19, the initial conditions for 
this pandemic are derived from the figures34F

35 on the 30th day divided by the population size of 
11.9M. The standard numerical method for approximating solutions of differential equations 
involves Euler series. Here, we use the first 30 members of the Euler series for approximating β 
and γ: 
 
Euler series for the SIR Model: First tangent point: Second tangent point: 
- s(tn+1) = s(tn) - β·s(tn)·i(tn)  
- i(tn+1) = i(tn) + β·s(tn)·i(tn) - γ·i(tn)  
- r(tn+1) = r(tn) + γ·i(tn) 

- s(t-29) = 0.99999991  
- i(t-29) = 0.00000008 
- r(t-29) = 0 

- s(t0) = 0.99998294  
- i(t0) = 0.00001588 
- r(t0) = 0.00000117 

 
I have written a computer program that approximates the Covid-19 transmission rate and removal 
rate as β = 0.21286905 and γ = 0.014752875 (with an error margin of  ≈10-9). Simply put, these 
rates mean that when no lockdown narrowed down the number of susceptible individuals during 
the first 30 days of Covid-19, every infected person transmitted the disease to about 0.21 
susceptible people per day, while roughly 1% of the infected people recovered or died from the 
disease on a daily basis. Now if the initial replacement number ρ0 of a disease, as defined below, 
is greater than one, then epidemiologists regard the disease as an epidemic; if ρ0 is equal to one 
or smaller, then the disease is not viewed as an epidemic. Furthermore, the formula given below 
can be used to calculate the maximal proportion of the infected class.  
 

Initial disease replacement number: Maximal proportion of infected people in an epidemic: 
General (Hethcote 1989:123) Covid-19 (Wuhan) General (Hethcote 1989:128) Covid-19 (Wuhan) 

0 0ρ = ⋅ sβ
γ

 0 14.4287415ρ =  
0 0max 1 log= − − − ⋅ ⋅

 
 
 

eI r sγ γ β
β β γ

 max 0.745703639=I  

 
As the replacement number of Covid-19 was about 14.4287415 on the last day of 2019, it can 
be inferred that based on the numbers shown in Table 4, a serious epidemic loomed in the Wuhan 
area for 2020 that threatened to contaminate 75% of the local population at its peak. In order to 
make a prediction on the last day of 2019 whether a pandemic loomed in 2020, we need to 
access a database of historical contagious diseases such as the ca. 250 entries of Byrne (2008)’s 
Encyclopedia of Pandemics and Plagues, which includes the following known events.  
 
 
 
 
 
 

 
35 From Table 4, we can derive: S(30) = 11.899.797; I(30) = 189; R(30) = 14. 
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Name Time period Type / Pre-human host Death toll 
Antonine Plague 165-180 Believed to be smallpox or measles 5M 
Japanese smallpox  735-737 Variola major virus 1M 
Plague of Justinian 541-542 Yersinia pestis bacteria / Rats, fleas 30-50M 
Black Death 1347-1351 Yersinia pestis bacteria / Rats, fleas 200M 
New World Smallpox  1520 – onwards Variola major virus 56M 
Italian plague 1629-1631 Yersinia pestis bacteria / Rats, fleas 1M 
Cholera Pandemics 1-6 1817-1923 V. cholerae bacteria 1M+ 
Third Plague 1885 Yersinia pestis bacteria / Rats, fleas 12M  
Russian Flu 1889-1890 Believed to be H2N2 (avian origin) 1M 
Spanish Flu 1918-1919 H1N1 virus / Pigs 40-50M 
Asian Flu 1957-1958 H2N2 virus 1.1M 
Hong Kong Flu 1968-1970 H3N2 virus 1M 
HIV/AIDS 1981-present  Virus / Chimpanzees 25-35M 

Table 5: Historical pandemics (Byrne 2008) 

 
Although the genome of some past pandemic viruses and bacteria has been identified, the 
reproduction and recovery rates (β and γ) of almost all past diseases are unavailable. Suppose 
that 11 of the 250 contagious diseases mentioned in Byrne’s encyclopedia show similar rates (β 
and γ) as Covid-19. Thus, these 11 diseases represent the sample Σ of the pandemic prediction. 
Suppose that nine of these diseases (X) have led to one of the pandemics listed in Table 5. 
Therefore, the prediction χ (There will be a pandemic next year) has the truth degree P = 9/11 = 
82%.  
 
Item E (Section 2.2) 
The sample and property set of (9c-f), relabeled as (53c-f),  
 
(53) c. Bimbo will neither hike nor diminish its bakery business next year. 
 d. Clorox will strongly increase sales of its disinfecting products next year. 
 e. The car rental company Hertz will file for bankruptcy next year. 
 f. Kimberley-Clark will greatly boost sales of its paper towels next year. 
 
are cartesian products or arrayed data structures (as used in relational SQL databases). A 
financial analytic firm holds its data in the following kind of table which includes entries going 
back to 1913 when the first disinfecting companies and rental car companies were founded.  

 
Field Name Data Type Description 
Company Text Name of Company 
Year Number Year in the past to which 2019 is compared 
Competitors Text Competitors of the company in 2019  
Partners Text Partners of the company in 2019 
Event Number 1 = epidemic; 2 = war; 3 = recession; 4 = other disaster; 5 = no event in following year  
Profitability Number Change in profit margins (%) in the year of comparison 
Bankruptcy Year+1 Yes/No Did bankruptcy occur in year following the year of comparison? 
Sales Change Year+1 Number Increase/decrease of sales (%) in year following the year of comparison? 

Table 6: Datasheet of stock exchange-listed companies (Example) 

 
The samples are drawn from this table by applying filters (queries), while the property sets 

are derived from the samples by using additional filters. Table 7 provides hypothetical 
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cardinalities for each set. For example, the sample Σφ consists of those competitors or partners 
of Clorox that in a past year experienced an epidemic or were approximately as profitable as 
Clorox. The property set Xφ comprises of those companies in the sample that increased their 
sales by at least 9% in the following year. In addition to the premise and filters of Σφ, Xφ thus 
uses one additional microeconomic filter, i.e. [Sales In/Decrease Year+1]  ≥ 9%.  

 
 Premise Macroeconomic 

filter Microeconomic filter Cardinality 

Σ: Bimbo ∈ [Competitors] ∪ [Partners] ∧ ([Event] = “1,2,4” ∨ [Profitability] ≈ Bimbo profitability 2019) 523 
X:     [Sales In/Decrease Year+1]  ≈ 0%  214 
Σ: Clorox ∈ [Competitors] ∪ [Partners] ∧ ([Event] = “1” ∨ [Profitability] ≈ Clorox profitability 2019) 349 
X:     [Sales In/Decrease Year+1]  ≥ 9%  73 
Σ: Hertz ∈ [Competitors] ∪ [Partners] ∧ ([Event] = “1,2,3,4” ∨ [Profitability] ≈ Hertz profitability 2019) 216 
X:     [Bankruptcy Year+1] = “Yes” 5 
Σ: Kimberley-Clark∈ [Competitors] ∪ [Partners] ∧ ([Event] = “1,2,4” ∨ [Profitability] ≈ KC profitability 2019) 421 
X:     [Sales In/Decrease Year+1]  ≥ 9% 80 

Table 7: Sample and property set of four economic predictions  

 
Item F (Section 2.5) 
Below is a hypothetical example of a population (sample) of n = 27 owls with their respective 
number of hunts uk (k = 1,…,27) during a three-months trial period. All actual hunts lie below        
q = 200, the maximal number of possible hunting events. Five baby owls did not hunt any mouse 
(thus m = 22). The ornithologists decided that an owl must hunt r = 30 mice in 180 days to count 
as prey bird. 
 

Owl ID Hunts Owl ID Hunts Owl ID Hunts Owl ID Hunts Owl ID Hunts Owl ID Hunts 
1 0 6 10 11 54 16 85 21 108 26 149 
2 0 7 18 12 58 17 88 22 117 27 151 
3 0 8 24 13 65 18 92 23 122   
4 0 9 31 14 73 19 97 24 135   
5 0 10 39 15 81 20 101 25 146   

Table 8: Number of hunts per owl during 180 days 

 
Item G (Section 2.6) 
The height of all players of Dallas Mavericks and of Utah Jazz are juxtaposed in the following 
table and allow to establish the cardinal number of X = {(x1, x2) | x1 > x2} as 162. 
 

Σ1 = Dallas Mavericks Σ2 = Utah Jazz 
Height cm Height cm Height cm Height cm Height cm Height cm 
178 196 208 183 193 201 
185 196 208 185 193 203 
188 198 213 185 196 206 
193 201 221 188 196 208 
196 201 224 190 201 216 
196 201  190 201  

Table 9: Comparison of Dallas Mavericks and Utah Jazz 
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Item H (Section 2.6) 
If we denote Σ1 = ‘Chicago Bulls’ and Σ2 = ‘NBA Players’ without ‘Chicago Bulls’, then the number 
of positive comparisons X = {(x1, x2) | x1 > x2} can be obtained by adding up the numbers of the 
second, fourth and sixth column, which is 4152.  
 

Height of Σ1 
player cm 

Number of 
smaller Σ2 players 

Height of Σ1 
player cm 

Number of smaller 
Σ2 players 

Height of Σ1 
player cm 

Number of 
smaller Σ2 players 

190 57 198 192 206 347 
190 57 201 247 208 385 
193 99 201 247 208 385 
193 99 201 247 213 450 
196 137 203 296 218 474 
196 137 203 296   

Table 10: Comparison of ‘Chicago Bulls’ and ‘NBA Players without Chicago Bulls’ 

 
Item I (Section 2.6) 
Let us write Σ1 = ‘Dallas Mavericks’ and Σ2 = Lower Half of ‘NBA Players’ without ‘Dallas 
Mavericks’, then the number of positive comparisons can be added up from the numbers in the 
second, fourth and sixth column. It is 2816. (Upper/lower half refers to the median value that 
splits a distribution into two halves.) 
 

Height of Σ1 
player cm 

Number of 
smaller Σ2 players 

Height of Σ1 
player cm 

Number of 
smaller Σ2 players 

Height of Σ1 
player cm 

Number of 
smaller Σ2 players 

178 1 196 137 208 240 
185 18 196 137 208 240 
188 41 198 190 213 240 
193 98 201 240 221 240 
196 137 201 240 224 240 
196 137 201 240   

Table 11: Comparison of ‘Dallas Mavericks’ and ‘NBA Players without Dallas Mavericks’ 

 
Item J (Section 3.1) 
In this subsection I show that ⋅ : SENT → [0,1] in Sample Logic satisfies the slightly modified 
Kolmogorov axioms of (20) relabeled as (54). 

 
(54)  Proof: 
 K1 The truth degree is between 0 and 1, because the property set is a subset of the 

sample. 
 K2 The formulas φ ∧ ¬φ and φ ∨ ¬φ are evaluated according to (19ciii). By design, we have 

Xφ ∩ X¬φ = ∅ and Xφ ∪ X¬φ = Σφ and thus 0φ ∧ ¬φ =  and 1φ ∨ ¬φ =  ; 
 K3' We show axiom K3 for independent propositions and propositions with Σφ = Σψ. We 

assume that ψ 0φ ∧ = 

. If φ and ψ are independent, then Σφ and Σψ are 
uncorrelated and we have Xφ∧ψ = Xφ  × Xψ = ∅, thus either Xφ = ∅ or Xψ = ∅.  
If Xφ = ∅ then Xφ∨ψ = Σφ × Xψ and ψ ψφ ∨ φ= +     

; if Xψ = ∅, then  
Xφ∨ψ = Xφ × Σψ and also ψ ψφ ∨ φ= +     

.  
In the second case, let us suppose that Σφ = Σψ and ψ 0φ ∧ = 

. According to  
(19c-iii), we have Xφ∧ψ = Xφ  ∩ Xψ = ∅. It follows that |Xφ∨ψ| = |Xφ ∪ Xψ| = |Xφ| + |Xψ| 
and hence ψ ψφ ∨ φ= +     

.  
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 K4 In the first case, let φ and ψ be independent; Σφ and Σψ are uncorrelated and we have 
Xφ∨ψ = (Xφ  × Xψ) ∪ (X¬φ  × Xψ) ∪ (Xφ  × X¬ψ) = (Σφ  × Xψ) ∪ (Xφ  × X¬ψ) ⊂  

(Σφ  × Xψ) ∪ (Xφ  × Xψ) ∪ (Xφ  × X¬ψ) = (Σφ  × Xψ) ∪ (Xφ  × Σψ). It follows that 

ψ ψ ψ ψ ψ

ψ ψ ψ ψ

ψ ψφ∨ φ φ φ φ

φ∨ φ φ φ

⋅ + ⋅ ⋅ ⋅
φ ∨ ≤ = + = φ

× ⋅ ⋅
= +

X Σ X X Σ Σ X X Σ

Σ Σ Σ Σ Σ Σ Σ
       

In the second case, let φ and ψ be dependent. As Σφ and Σψ are correlated, the 

following relations hold: 
ψ ψ ψ

ψ ψ ψ

ψ φ∨ φ φ

φ∨ φ φ

∪ +
φ ∨ = ≤ =

∪ ∪
=

X X X X X

Σ Σ Σ Σ Σ
   

ψ ψ

ψ ψ ψ

ψφ φ

φφ φ

+ ≤ + = φ
∪ ∪

+
X XX X

ΣΣ Σ Σ Σ Σ
    . 

 
Item K (Section 3.1) 
We demonstrate for Sample Logic in this subsection that 1φ φ¬ = −   

, that ⋅  is idempotent 
and coherent, and that the two de Morgan laws hold. 

 
(55)  Proof: 
 a. We have 1φ φ¬ = −   

 which directly follows from the definition of negation in (17).  
 b. In order to show that φ ∧ φ φ=   

, the property set Xφ∧φ is Xφ ∩ Xφ = Xφ according 
to the definition (19ciii). The evaluation is thus idempotent.  

 c. In the same vein, the property set Xφ∧¬φ is Xφ ∩ X¬φ = ∅ according to the definition 
(19ciii). The evaluation is thus coherent. 

 d. To demonstrate the de Morgan laws, we first consider the case where φ and ψ are 
independent. According to (19b), we have  
Xφ∧ψ ∪ X¬φ∨¬ψ = (Xφ  × Xψ) ∪ (X¬φ  × X¬ψ) ∪ (Xφ × X¬ψ) ∪ (X¬φ  × Xψ) = Σφ  × Σψ and 
Xφ∧ψ ∩ X¬φ∨¬ψ = ∅. If follows thus ( )ψ ψφ ∧ = φ ∨¬ ¬ ¬    . Furthermore, we have  
Xφ∨ψ ∪ X¬φ∧¬ψ = (Xφ  × Xψ) ∪ (X¬φ × Xψ) ∪ (Xφ  × X¬ψ) ∪ (X¬φ  × X¬ψ) = Σφ  × Σψ and 
Xφ∨ψ ∩ X¬φ∧¬ψ = ∅. We can conclude that ( )ψ ψφ ∨ = φ ∧¬ ¬ ¬   

.  
In the second case, let φ and ψ coordinated. According to (19c), we have 
Xφ∧ψ ∪ X¬φ∨¬ψ = (Xφ  ∩ Xψ) ∪ (Xφ \ Σψ) ∪ (Xψ \ Σφ) ∪ (X¬φ  ∪ X¬ψ) = Σφ  ∪ Σψ and 
Xφ∧ψ ∩ X¬φ∨¬ψ = ∅. If follows thus ( )ψ ψφ ∧ = φ ∨¬ ¬ ¬    . In addition, we also have  
Xφ∨ψ ∪ X¬φ∧¬ψ = (Xφ  ∪ Xψ) ∪ (X¬φ  ∩ X¬ψ) ∪ (X¬φ \ Σψ) ∪ (X¬ψ \ Σφ) = Σφ  ∪ Σψ and 
Xφ∨ψ ∩ X¬φ∧¬ψ = ∅. If follows thus that ( )ψ ψφ ∨ = φ ∧¬ ¬ ¬   

. 
In the third case, let ψ be subordinated to φ. If (b1,…bn) ∈ Σφ∨ψ, then according to (19d),  
there is (a1,…,ai) ∈ Σφ with a1 = b1,…, ai = bi. If (a1,…,ai) ∈ Xφ, then (b1,…bn) ∈ Xφ∧ψ or 
(b1,…bn) ∈ Xφ∧¬ψ ⊆ X¬φ∨¬ψ; if (a1,…,ai) ∈ X¬φ, then (b1,…bn) ∈ X¬φ∨¬ψ, and therefore  
Xφ∧ψ ∪ X¬φ∨¬ψ = Σφ∨ψ. Furthermore, let (b1,…bn) ∈ Xφ∧ψ. According to (19d), there is 
(a1,…,ai) ∈ Xφ with a1 = b1,…, ai = bi. There cannot be (c1,…,cj) ∈ X¬φ with c1 = b1,…, cj = bj. 
We therefore conclude Xφ∧ψ ∩ X¬φ∨¬ψ = ∅ and ( )ψ ψφ ∧ = φ ∨¬ ¬ ¬    . On the other 
hand, if (b1,…bn) ∈ Σφ∨ψ, then there is (a1,…,ai) ∈ Σφ with a1 = b1,…, ai = bi.  
If (a1,…,ai) ∈ Xφ, then (b1,…bn) ∈ Xφ∨ψ; if (a1,…,ai) ∈ X¬φ, then (b1,…bn) ∈ X¬φ∧¬ψ or 
(b1,…bn) ∈ Xφ∨ψ. Moreover, let (b1,…bn) ∈ X¬φ∧¬ψ. According to (19d), there is  
(a1,…,ai) ∈ X¬φ with a1 = b1,…, ai = bi. There cannot be (c1,…,cj) ∈ Xφ with c1 = b1,…, cj = bj. It 
follows that Xφ∨ψ ∩ X¬φ∧¬ψ = ∅ and ( )ψ ψφ ∨ = φ ∧¬ ¬ ¬   

.  
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Item L (Section 3.2) 
The sample and property set of the conjunction of φ (Clorox will strongly increase sales of its 
disinfecting products) and ψ (Kimberley-Clark will greatly boost sales of its paper towels next 
year) can be derived from table 7 and from table 12 below. (Each time the property sets share 
the premises and filters of the sample and are filtered by one additional microeconomic property.) 
The truth conjunctive degree is 17% 1ψ 07 / 627φ ∧ = =  . 

 
 Premise Macroeconomic 

filter Microeconomic filter Cardinality 

Σφ∪Σψ: Clorox or KC∈[Competitors] ∪ [Partners] ∧ ([Event] = “1,2,4” ∨ [Profitability] ≈ Clorox or KC profitability 2019) 627 
Xφ∩Xψ:     [Sales In/Decrease Year+1]  ≥ 9%  31 
Σφ \ Σψ: Clorox∈, KC∉[Competitors] ∪ [Partners] ∧ ([Event] = “1” ∨ [Profitability] ≈ Clorox profitability 2019) 206 
Xφ \ Σψ:     [Sales In/Decrease Year+1]  ≥ 9% 33 
Σψ \ Σφ: Clorox∉, KC∈[Competitors] ∪ [Partners] ∧ ([Event] = “1,4” ∨ [Profitability] ≈ KC profitability 2019) 278 
Xψ \ Σφ:     [Sales In/Decrease Year+1]  ≥ 9% 43 

Σφ∧ψ: Σφ ∪ Σψ      627 
Xφ∧ψ: (Xφ ∩ Xψ) ∪ (Xφ \ Σψ) ∪ (Xψ \ Σφ)     107 

Table 12: Sample and property set of the conjunction φ∧ψ 

 
Item M (Section 3.2) 
The truth degree of the conjunction of φ (There is a pandemic next year) and ψ (Clorox will 
strongly increase sales of its disinfecting products) can be derived from table 13 which applies 
Σφ as a filter onto Σψ (see table 7, item E). The conjunctive truth degree is ψ 71% 68 96φ ∧ = = 

. 
 

 Premise Macroeconomic filter Microeconomic filter Cardinality 
Σφ∧ψ: Clorox ∈ [Competitors] ∪ [Partners] ∧ ([Event] = “1”)   96 
Xφ∧ψ:   ([Event] = “pandemic” ∧ [Sales In/Decrease Year+1]  ≥ 9%  68 
X¬φ∧ψ:   ([Event] = “¬pandemic” ∧ [Sales In/Decrease Year+1]  ≥ 9%  4 
Xφ∧¬ψ:   ([Event] = “pandemic” ∧ [Sales In/Decrease Year+1]  < 9%  2 
X¬φ∧¬ψ:   ([Event] = “¬pandemic” ∧ [Sales In/Decrease Year+1]  < 9%  22 

Table 13: Sample and property of Clorox performance under pandemic  
 
Item N (Section 3.2) 
The truth degree of the conjunction of φ (The Dallas Mavericks players are taller than the Utah 
Jazz players) and ψ (The Dallas Mavericks players are taller than the Denver Nuggets players) 
can be computed from the figures in table 9 (item G) above (φ) and those in table 14 below (ψ). 
We can establish the cardinal number of Xψ = {(x1, x2) | x1 > x2} as 108. 
 

Σ1 = Dallas Mavericks Σ2 = Denver Nuggets 
Height cm Height cm Height cm Height cm Height cm Height cm 
178 196 208 188 201 208 
185 196 208 193 201 211 
188 198 213 193 203 213 
193 201 221 193 203 218 
196 201 224 196 203  
196 201  198 208  

Table 14: Comparison of Dallas Mavericks and Denver Nuggets 
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The conjunctive truth degree is calculated according to (19c-i) by following the steps in the 
following table. 
 
Sample: Cardinality Property set: Cardinality 

Σφ = {Heights of Dallas Mavericks} × {Heights of Utah Jazz} 289 Xφ = {(x1,x2) ∈ Σφ | x1 > x2}  162 
Σψ = {Heights of Dallas Mavericks} × {Heights of Denver Nuggets} 272 Xψ = {(x1,x2) ∈ Σψ | x1  > x2} 108 
Σφ ∪ Σψ = {Heights of Dallas Mavericks} × {Heights of UJ and DN} 561 Xφ ∪ Xψ = {(x1,x2) ∈ Σφ ∪ Σψ | x1 > x2} 270 
Σφ∧ψ = Σφ ∪ Σψ 561 Xφ∧ψ = Xφ ∪ Xψ 270 

Table 15: Sample and property set of the conjunction φ∧ψ with Σφ  ∩ Σψ = ∅  

 
Item O (Section 3.2) 
The truth degree of the conjunction of φ (The Dallas Mavericks players are taller than the Utah 
Jazz players) and ψ (The Dallas Mavericks players are not the tallest team of the NBA) can be 
computed from the figures in table 9 (item G) above (φ) and those in table 16 below (ψ). For 
determining the property set of ¬ψ (The players of Dallas Mavericks are the tallest team of the 
NBA), let us write Σ1 = ‘Dallas Mavericks’ and Σ2 = ‘NBA Players’ without ‘Dallas Mavericks’. The 
number of positive comparisons X¬ψ = {(x1, x2) | x1 > x2} can be obtained by adding up the 
numbers of the second, fourth and sixth column. Its cardinal number is 3812. 
 

Height of Σ1 
player cm 

Number of 
smaller Σ2 players 

Height of Σ1 
player cm 

Number of smaller 
Σ2 players 

Height of Σ1 
player cm 

Number of 
smaller Σ2 players 

178 1 196 137 208 386 
185 18 196 137 208 386 
188 41 198 190 213 451 
193 98 201 245 221 479 
196 137 201 245 224 479 
196 137 201 245   

Table 16: Comparison of ‘Dallas Mavericks’ and ‘NBA Players without Dallas Mavericks’ 

 
The property set Xψ thus counts (17×480) - 3812 = 4348 positive comparisons. The truth degree 
of φ∧ψ can be calculated as 52% (4221/8160) by following the steps explicated in table 17.  
 
Sample: Cardinality Property set: Cardinality 

Σφ = {Dallas Mavericks height} × {Utah Jazz height} 289 Xφ = {(x1,x2) ∈ Σφ | x1 > x2}  162 
Σψ = {DM height} × {Height of NBA without DM} 8160 Xψ = {(x1,x2) ∈ Σψ | x1  ≤ x2} 4348 
  Xφ ∩ Xψ = {(x1,x2) ∈ Σφ | x1 > x2 and x1  ≤ x2} 0 
Σψ \ Σφ = {DM height} × {Height of NBA without DM and UJ} 7871 Xψ \ Σφ = {(x1,x2) ∈ Σψ \ Σφ | x1 ≤ x2} 4221 
Σφ∧ψ = Σψ  8160 Xφ∧ψ = (Xφ ∩ Xψ) ∪ (Xψ \ Σφ) 4221 

Table 17: Sample and property set of the conjunction φ∧ψ with Σφ  ⊂ Σψ and Σφ  ≠ Σψ  

 
 
Item P (Section 3.3) 
The height and weight of the Dallas Mavericks and Utah Jazz players are juxtaposed in the 
following table and allow to count the cardinal number of Xφ = {(x1,x2) | x1 taller than x2} as 162; 
Xψ = {(x1,x2) | x1 heavier than x2} as 156; Xφ∧ψ = {(x1,x2) | x1 taller and heavier than x2} as 128.  
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Σ1 = Dallas Mavericks Σ2 = Utah Jazz 
Height 

cm 
Weight 

kg 
Height 

cm 
Weight 

kg 
Height 

cm 
Weight 

kg 
Height 

cm 
Weight 

kg 
Height 

cm 
Weight 

kg 
Height 

cm 
Weight 

kg 
178 82 196 84 208 109 183 86 193 88 201 105 
185 86 196 93 208 109 185 98 193 103 203 103 
188 84 198 105 213 109 185 79 196 113 206 99 
193 97 201 100 221 109 188 86 196 93 208 112 
196 88 201 100 224 132 190 91 201 104 216 117 
196 98 201 104   190 95 201 100   

Table 18: Height and weight comparison of Dallas Mavericks and Utah Jazz 

 
Item Q (Section 3.2) 
In (27), the truth degree of the conjunction of φ (The Dallas Mavericks players are taller than the 
Denver Nuggets players) and ψ (The Dallas Mavericks players are even the tallest team of the 
NBA) can be computed from the figures in table 14 (item N) above (φ) and those in table 16 (item 
O) above (ψ). The cardinal number of Xφ = {(x1,x2) | x1 > x2} is 108 and of Xψ = {(x1,x2) | x1 > x2} 
is 3812. The truth degree of φ∧ψ can be computed by following the steps indicated in table 19. It 
is 47% (3812/8160).  
 
Sample: Cardinality Property set: Cardinality 

Σφ = {Height of Dallas Mavericks} × {Height of Denver Nuggets} 272 Xφ = {(x1,x2) ∈ Σφ | x1 > x2}  108 
Σψ = {Height of Dallas Mavericks} × {Height of NBA without DM} 8160 Xψ = {(x1,x2) ∈ Σψ | x1  > x2} 3812 
  Xφ ∩ Xψ = {(x1,x2) ∈ Σφ | x1 > x2} 108 
Σψ \ Σφ = {DM heights} × {NBA heights without DM and DN} 7888 Xψ \ Σφ = {(x1,x2) ∈ Σψ \ Σφ | x1 > x2} 3704 
Σφ∧ψ = Σψ  8160 Xφ∧ψ = (Xφ ∩ Xψ) ∪ (Xψ \ Σφ) 3812 

Table 19: Sample and property set of the conjunction φ∧ψ with Σφ  ⊂ Σψ and Σφ  ≠ Σψ  

 
Item R (Section 3.3) 
The properties of the conditional and biconditional (lemma 30, relabeled as 56) are demonstrated 
below.  

 
(56)  Proof:  
 a. For   ψ  0φ φ ∧ φ> <     and : 

ψ ψ ψ

ψ ψ ψ

X X X ψψ
X X

φ→ φ∧ φ φ∧ φ

φ→ φ∧ φ φ∧ φ

×Σ ⋅ Σ φ ∧
φ → = = =

φΣ Σ × Σ ⋅
=  

 

 

;  

For   ψ0φ φ φ ∧> <     and : 

ψ ψ ψ

ψ ψ ψ

X X X
ψ

ψX X
φ→ φ∧ φ φ∧ φ

φ→ φ∧ φ φ∧ φ

Σ × Σ ⋅ φ
φ → = = =

φ ∧Σ ×Σ ⋅ Σ
=  

 

 

 

 b. ψ 0φ → = 

 iff 0φ > 

 and ψ 0φ ∧ = 

is a direct consequence of (29a). 
 c. ψ 1φ → = 

 iff 0φ = 

 or ψφ ∧ φ=   

 is a direct consequence of (29a). 
 d. Applying the definition (29b), we have for ψ   ψ0, 0φ φ> > <       and :

ψ ψ ψ

ψ ψ ψ

X X X ψψ
X X

φ↔ φ φ

φ↔ φ φ

×Σ ⋅ Σ
φ ↔ = = =

φΣ ×Σ ⋅ Σ
=   

 

; for the subcase ψ ψ0 φ ∧< ≤   
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we have: 
ψ ψ ψ ψψ

ψ ψ
φ ∧ φ →

φ ↔ = = =
φ φ ∧ φ → φ

⋅
⋅

       

 

       

; for the other subcase 

ψ ψφ ∧<   

 we have: 
ψ ψ ψψ ψ ψ

ψ
φ ∧

φ ↔ = = = φ → → φ
φ φ ∧ φ

⋅ ⋅
⋅

     

     

     

. In 

the same vein, we have for ψ   ψ0, 0φ φ> > <       and : 

ψ ψ ψ

ψ ψ ψ

X X X
ψ

ψX X
φ↔ φ φ

φ↔ φ φ

×Σ ⋅ Σ φ
φ ↔ = = =

Σ ×Σ ⋅ Σ
=   

 

; for the subcase ψ0 φ ∧ φ< ≤   

 

we have: 
ψ ψψ

ψ ψ ψ ψ
φ φ φ ∧ → φ

φ ↔ = = =
φ ∧ φ →

⋅
⋅

       

 

       

; for the other subcase 

ψφ φ ∧<   

 we have: 
ψψ ψ ψ

ψ ψ ψ
φ φ φ ∧

φ ↔ = = = φ → → φ
φ ∧

⋅ ⋅
⋅

     

     

     

. 

 e. This is a consequence of the definition in (29b). 
 f. This is a consequence of the definition in (29b). 
 g. This is a consequence of (28b). 
 h. This is a consequence of (28c). 

 
 

Item S (Section 3.3) 
The pair of propositions in (31)-(36) exhibit conditional and biconditional truth degrees that can 
be directly computed from the component truth degrees and lemma (30). The conjunctive truth 
degrees are retrieved from section 3.2.  

 
Example φ   ψ   ψφ ∧ 

 ψφ → 

 ψ φ→ 

 ψφ ↔ 

 

(31) 7321%
349

=  52%
216

=  5 730.5%
216 349

⋅
=

⋅
 52%

216
=  7321%

349
=  5 34911%

216 73
⋅

=
⋅

 

(32) 7321%
349

=  8019%
421

=  10717%
607

=  107 34984%
607 73

⋅
=

⋅
 107 42193%

607 80
⋅

=
⋅

 349 8091%
421 73

⋅
=

⋅
 

(33) 982%
11

=  7321%
349

=  6871%
96

=  68 1187%
96 9

⋅
=

⋅
 73 9630%

349 68
⋅

=
⋅

 73 1126%
349 9

⋅
=

⋅
 

(34) 16256%
289

=  10840%
272

=  27048%
561

=  270 28986%
561 162

⋅
=

⋅
 561 10883%

270 272
⋅

=
⋅

 289 10871%
162 272

⋅
=

⋅
 

(35) 16256%
289

=  15654%
289

=  12844%
289

=  12879%
162

=  12882%
156

=  15696%
162

=  

(36) 10840%
272

=  381247%
8160

=  381247%
8160

=  172 381274%
108 8160

⋅
=

⋅
 100%  172 381274%

108 8160
⋅

=
⋅

 

Table 20: Truth degrees of the Probabilistic Conditional and Biconditional  

 
 
Item T (Section 3.3) 
The sample and property set of ¬φ ∨ ψ and (φ → ψ) ∧ (ψ → φ) for the examples (31)-(36), can 
be calculated by following the definition of conjunction and disjunction in (19) and by retrieving 
the data of previous tables, as indicated in table 21. (The last two lines in each block in table 21 
provide the samples and property sets for each formula. The cardinality of these samples and 
property sets yields the truth degrees in table 2, section 3.3). 
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Property Set and Sample Cardinality Property Set and Sample Cardinality 

(31) 
(table 6, 7) 

Xφ 73 Xψ 5 
X¬φ × Xψ 1380   
Xφ × Xψ 365 X¬φ × X¬ψ 58236 

X¬φ∨ψ = (X¬φ × Xψ) ∪ (Xφ × Xψ) ∪ (X¬φ ×X¬ψ) 59981 X(¬φ∨ψ)∧(¬ψ∨φ) = X¬φ∨ψ ∩ X¬ψ∨φ =  
Σ(¬φ∨ψ)∧(¬φ∨ψ) = Σ¬φ∨ψ = Σ¬ψ∨φ = Σφ × Σψ 75384 = (Xφ × Xψ) ∪ (X¬φ × X¬ψ) 58601 

(32) 
(table 6, 7,12) 

Xφ 73 Xψ 80 
Xφ \ Σψ 33 X¬φ \ Σψ 173 = 206-33 
Xφ ∩ Xψ 31 X¬φ ∩ X¬ψ 97 

X¬φ∨ψ = (X¬φ ∩ X¬ψ) ∪ (X¬φ \ Σψ) ∪ Xψ 350 X(¬φ∨ψ)∧(¬ψ∨φ) = X¬φ∨ψ ∩ X¬ψ∨φ =  
Σ(¬φ∨ψ)∧(¬φ∨ψ) = Σ¬φ∨ψ = Σ¬ψ∨φ = Σφ ∪ Σψ 627 = (Xφ ∩ Xψ) ∪ (X¬φ ∩ X¬ψ) 128 

(33) 
(table 13) 

Xφ∧ψ 68 X¬φ∧ψ 4 
Xφ∧¬ψ 2 X¬φ∧¬ψ 22 
X¬φ∧ψ ∪ Xφ∧ψ ∪ X¬φ∧¬ψ  94 X¬ψ∨φ = Xφ∧¬ψ ∪ X¬φ∧¬ψ ∪ Xφ∧ψ 92 

X¬φ∨ψ = X¬φ∧ψ ∪ Xφ∧ψ ∪ X¬φ∧¬ψ 94 X(¬φ∨ψ)∧(¬ψ∨φ) = X¬φ∨ψ ∩ X¬ψ∨φ =  
Σ(¬φ∨ψ)∧(¬φ∨ψ) = Σ¬φ∨ψ = Σ¬ψ∨φ =Σφ∧ψ 96 = Xφ∧ψ ∪ X¬φ∧¬ψ 90 

(34) 
(table 15) 

Xφ 162 Xψ 108 
X¬φ 127 X¬ψ 164 
X¬φ ∪ Xψ 235 Xφ ∪ X¬ψ 326 

X¬φ∨ψ = X¬φ ∪ Xψ 235 X(¬φ∨ψ)∧(¬ψ∨φ) = X¬φ∨ψ ∩ X¬ψ∨φ =  
Σ(¬φ∨ψ)∧(¬φ∨ψ) = Σ¬φ∨ψ = Σ¬ψ∨φ = Σφ ∪ Σψ 561 = (Xφ ∩ Xψ) ∪ (X¬φ ∩ X¬ψ) 0 

(35) 
(table 18) 

Xφ 162 Xψ 156 
X¬φ 127 X¬ψ 133 
X¬φ ∪ Xψ 255 Xφ ∪ X¬ψ 275 

X¬φ∨ψ = X¬φ ∪ Xψ 255 X(¬φ∨ψ)∧(¬ψ∨φ) = X¬φ∨ψ ∩ X¬ψ∨φ =  
Σ(¬φ∨ψ)∧(¬φ∨ψ) = Σ¬φ∨ψ = Σ¬ψ∨φ = Σφ = Σψ 289 = (Xφ ∩ Xψ) ∪ (X¬φ ∩ X¬ψ) 241 

(36) 
(table 19) 

Xφ 108 Xψ 3812 
X¬φ 164 X¬ψ 4348 
Xφ ∩ Xψ 108 X¬φ ∩ X¬ψ 164 

X¬φ∨ψ = (X¬φ ∩ X¬ψ) ∪ Xψ 3920 X(¬φ∨ψ)∧(¬ψ∨φ) = X¬φ∨ψ ∩ X¬ψ∨φ =  
Σ(¬φ∨ψ)∧(¬φ∨ψ) = Σ¬φ∨ψ = Σ¬ψ∨φ = Σψ 8160 = (Xφ ∩ Xψ) ∪ (X¬φ ∩ X¬ψ) 272 

Table 21: Truth Degree Calculation of the material Conditionals/Biconditionals 

 
Item U (Section 3.4) 
The proof of Lemma (38), relabeled as (57), is provided below. 
 
(57)  Proof 
 a. We start from (i) and (ii) and assume that φ and ψ as well as χ and ψ are independent. 

It follows that the samples Σχ and Σψ respectively Σφ and Σψ are uncorrelated. From 
(19) we can infer that that Σχ∧φ and Σψ are uncorrelated or put differently that (χ ∧ φ) 
and ψ are independent. Because of this independence it is the case that 

χ χ ψ χ χ ψ χ ψ χ∧ φ ∧ ∧ φ ∧ φ ∧⋅ = ⋅ ⋅ = ⋅             

. If we divide both sides of the 
equation by χ χ⋅   

, it follows from the way conditionals are defined that 

( )χ ψ χ χ ψ→ φ ∧ = → φ →⋅       or that φ and ψ are conditionally independent given χ.  

 b. We start again from (i) and (ii). We spell out (ii): Σχ and Σψ are uncorrelated, as are Σχ 
and Σφ. From (19) we can conclude that Σχ and Σψ∧φ are uncorrelated, or put differently 
that χ and (ψ ∧ φ) are independent. Now ( )χ ψ χ χ ψ→ φ ∧ = → φ →⋅       means that 

χ ψ χ∧ φ ∧ ⋅ =   

 χ χ ψ∧ φ ∧⋅   

. From the independence of χ and (ψ ∧ φ) and from 
(ii), we can conclude that ψ ψφ ∧ φ= ⋅     

 or that φ and ψ are independent.  
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Item V (Section 3.4) 
In examples (40), let χ (There will be a pandemic next year), φ (Clorox will strongly increase sales 
of its disinfecting products) and ψ (the car rental company Hertz will file for bankruptcy). In (41), 
the last sentence is exchanged by ψ (Kimberley-Clark will greatly boost sales of its paper towels). 
The truth degree of the complex conditional χ → (φ ∧ ψ) draws on the data of table 23. (Each 
time the property sets share the premises and filters of the sample and are filtered by one 
additional microeconomic property.) 
 

 Premise Macroeconomic filter Microeconomic filter Cardinality 
Σχ∧ψ: Hertz ∈ [Competitors] ∪ [Partners] ∧ ([Event] = “1”)   59 
Xχ∧ψ:   ([Event] = “pandemic” ∧ [Bankruptcy Year+1] = “Yes”  52 
Σχ∧φ∧ψ: Clorox or Hertz ∈ [Competitors] ∪ [Partners] ∧ ([Event] = “1”)   145 
Xχ∧φ∧ψ:   ([Event] = “pandemic” ∧ ([Sales In/Decrease Year+1]  ≥ 9% 113 
     or [Bankruptcy Year+1] = “Yes”)  

Σχ∧ψ: KC ∈ [Competitors] ∪ [Partners] ∧ ([Event] = “1”)   114 
Xχ∧ψ:   ([Event] = “pandemic” ∧ [Sales In/Decrease Year+1]  ≥ 9% 95 
Σχ∧φ∧ψ: Clorox or KC ∈ [Competitors] ∪ [Partners] ∧ ([Event] = “1”)   209 
Xχ∧φ∧ψ:   ([Event] = “pandemic” ∧ [Sales In/Decrease Year+1]  ≥ 9% 187 

Table 23: Performance of Hertz and Kimberley-Clark under pandemic  
 
Examples (39)-(41) depend on the data of tables 7, 12 and 13. In (39), the sentences χ, φ and ψ 
are mutually independent. Their conjunctive truth degrees can be calculated as multiplication.  
 

Example (39) (40) (41) 
χ   64%  82%  82%  
φ   21%  21%  21%  
ψ   41%  2%  19%  

ψφ ∧   73 2149%
349 523

⋅
=

⋅
 73 50.5%

349 216
⋅

=
⋅

 10717%
627

=  

ψφ ⋅     73 2149%
349 523

= ⋅  73 50.5%
349 216

= ⋅  73 804%
349 421

= ⋅  

χ ∧ φ 
 9 7313%

14 349
⋅

=
⋅

 6871%
96

=  6871%
96

=  

χ → φ   21%  68 1187%
96 9

⋅
=

⋅
 68 1187%

96 9
⋅

=
⋅

 

χ ψ∧   
9 21426%

14 523
⋅

=
⋅

 5288%
59

=  9583%
114

=  

χ ψ→ 
 41%  52 972%

59 11
⋅

=
⋅

 95 968%
114 11

⋅
=

⋅
 

χ χ ψ→ φ →⋅     73 2149%
349 523

= ⋅  68 5262%
96 59

= ⋅  68 9559%
96 114

= ⋅  

χ ψ∧ φ ∧ 
 9 73 2146%

14 349 523
⋅ ⋅

=
⋅ ⋅

 11378%
145

=  18789%
209

=  

( )χ ψ→ φ ∧   73 2149%
349 523

⋅
=

⋅
 113 1195%

145 9
⋅

=
⋅

 209 991%
187 11

⋅
=

⋅
 

Table 24: Conditional (In)dependence of Examples (39)-(41) 
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